Comparison of Ml Algorithms To Distinguish Between Human or Human-Like Targets Using the Hog Features of Range-Time and Range-Doppler Images in Through-The Applications

dc.contributor.author Acar, Yunus Emre
dc.contributor.author Saritas, İsmail
dc.contributor.author Yaldız, Ercan
dc.date.accessioned 2023-01-08T19:04:21Z
dc.date.available 2023-01-08T19:04:21Z
dc.date.issued 2022
dc.description.abstract When detecting the human targets behind walls, false detections occur for many systematic and environmental reasons. Identifying and eliminating these false detections is of great importance for many applications. This study investigates the potential of machine learning (ML) algorithms to distinguish between the human and human-like targets behind walls. For this purpose, a stepped-frequency continuous-wave (SFCW) radar has been set up. Experiments have been carried out with real human targets and moving plates imitating a regular breath of a healthy human. Unlike conventional methods, human and human-like returns are classified using range-Doppler images containing range and Doppler information. Then, the histogram of oriented gradients (HOG) features of the range-Doppler images are extracted, and the number of these features is reduced by principal component analysis (PCA). Finally, popular ML algorithms are executed to distinguish the human and human-like returns. The performances of the ML algorithms are compared for both range-time and range-Doppler images with or without HOG features. Experiments have indicated that the HOG features of the range-Doppler profiles provide the best results with the support vector machine (SVM) classifier with an accuracy of 93.57%. en_US
dc.description.sponsorship Academic Staff Training Program [2018-OYP-032]; Scientific Research Projects Coordinatorship of Selcuk University [19301003] en_US
dc.description.sponsorship This work is financially supported by the Academic Staff Training Program [2018-OYP-032] and Scientific Research Projects Coordinatorship [19301003] of Selcuk University. en_US
dc.identifier.doi 10.55730/1300-0632.3926
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.scopus 2-s2.0-85142295148
dc.identifier.uri https://doi.org/10.55730/1300-0632.3926
dc.identifier.uri https://hdl.handle.net/20.500.13091/3267
dc.language.iso en en_US
dc.publisher Scientific and Technological Research Council Turkey en_US
dc.relation.ispartof Turkish Journal of Electrical Engineering and Computer Sciences en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject HOG feature en_US
dc.subject human detection en_US
dc.subject machine learning en_US
dc.subject through-the-wall en_US
dc.subject radar en_US
dc.subject Fmcw Radar en_US
dc.title Comparison of Ml Algorithms To Distinguish Between Human or Human-Like Targets Using the Hog Features of Range-Time and Range-Doppler Images in Through-The Applications en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Yaldız, Ercan
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 2096 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 2086 en_US
gdc.description.volume 30 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4313207605
gdc.identifier.trdizinid 1142471
gdc.identifier.wos WOS:000884407400006
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.5760394E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.2944638E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.22199474
gdc.openalex.normalizedpercentile 0.46
gdc.opencitations.count 0
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Yaldız, Ercan
gdc.wos.citedcount 0
relation.isAuthorOfPublication 262dc2df-528d-4176-ace8-9e09ef139269
relation.isAuthorOfPublication.latestForDiscovery 262dc2df-528d-4176-ace8-9e09ef139269

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Comparison of ML algorithms to distinguish between human or human.pdf
Size:
1.63 MB
Format:
Adobe Portable Document Format