Comparison of Ml Algorithms To Distinguish Between Human or Human-Like Targets Using the Hog Features of Range-Time and Range-Doppler Images in Through-The Applications

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Scientific and Technological Research Council Turkey

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

When detecting the human targets behind walls, false detections occur for many systematic and environmental reasons. Identifying and eliminating these false detections is of great importance for many applications. This study investigates the potential of machine learning (ML) algorithms to distinguish between the human and human-like targets behind walls. For this purpose, a stepped-frequency continuous-wave (SFCW) radar has been set up. Experiments have been carried out with real human targets and moving plates imitating a regular breath of a healthy human. Unlike conventional methods, human and human-like returns are classified using range-Doppler images containing range and Doppler information. Then, the histogram of oriented gradients (HOG) features of the range-Doppler images are extracted, and the number of these features is reduced by principal component analysis (PCA). Finally, popular ML algorithms are executed to distinguish the human and human-like returns. The performances of the ML algorithms are compared for both range-time and range-Doppler images with or without HOG features. Experiments have indicated that the HOG features of the range-Doppler profiles provide the best results with the support vector machine (SVM) classifier with an accuracy of 93.57%.

Description

Keywords

HOG feature, human detection, machine learning, through-the-wall, radar, Fmcw Radar

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Turkish Journal of Electrical Engineering and Computer Sciences

Volume

30

Issue

6

Start Page

2086

End Page

2096
PlumX Metrics
Citations

CrossRef : 2

Scopus : 1

Captures

Mendeley Readers : 5

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.22199474

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo