Performance and Trade-Off Evaluation of Sift, Surf, Fast, Star and Orb Feature Detection Algorithms in Visual Odometry

dc.contributor.author Yusefi, Abdullah
dc.contributor.author Durdu, Akif
dc.date.accessioned 2023-01-08T19:04:21Z
dc.date.available 2023-01-08T19:04:21Z
dc.date.issued 2020
dc.description.abstract In recent years there has been a great deal of research and study in the field of visual odometry, which has led to the development of practical processes such as visual based measurement in robotics and automotive technology. Direct methods, feature-based methods and hybrid methods are three common approaches in solving visual odometry problems and given the general belief that feature-based approach speeds are higher, this approach has been welcomed in recent years. Therefore, an attempt has been made in the present study to calculate the transformation matrix of two-dimensional sequential image sets using invariant features that can estimate the changes in camera rotation and translation. In the algorithm, two-steps of identifying keypoints and removing outliers are performed using five different local feature detection algorithms (SURF, SIFT, FAST, STAR, ORB) and RANdom SAmple Consensus algorithm (RANSAC), respectively. In addition, the impact of each of them, their intrinsic parameters and dynamic noise on the accuracy of the transformation matrix are evaluated and analyzed in terms of rotational MSE and computational runtime. en_US
dc.identifier.doi 10.31590/ejosat.819735
dc.identifier.issn 2148-2683
dc.identifier.uri https://doi.org/10.31590/ejosat.819735
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/1136132
dc.identifier.uri https://hdl.handle.net/20.500.13091/3265
dc.language.iso en en_US
dc.relation.ispartof Avrupa Bilim ve Teknoloji Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Visual Odometry en_US
dc.subject Image Processing en_US
dc.subject Invariant Features en_US
dc.subject Local Feature Detection en_US
dc.subject Keypoints en_US
dc.subject RANSAC en_US
dc.subject Transformation Matrix en_US
dc.title Performance and Trade-Off Evaluation of Sift, Surf, Fast, Star and Orb Feature Detection Algorithms in Visual Odometry en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Yusefi, Abdullah
gdc.author.institutional Durdu, Akif
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölüm en_US
gdc.description.endpage 460 en_US
gdc.description.issue Ejosat Özel Sayı 2020 (ICCEES) en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 455 en_US
gdc.description.volume 0 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3096227967
gdc.identifier.trdizinid 1136132
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.6407443E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Visual Odometry;Image Processing;Invariant Features;Local Feature Detection;Keypoints;RANSAC;Transformation Matrix
gdc.oaire.keywords Engineering
gdc.oaire.keywords Mühendislik
gdc.oaire.keywords Görsel Odometri;Görüntü İşleme;Değişmeyen Özellikler;Yerel Özellik Algılama;Anahtar Noktalar;RANSAC;Dönüşüm Matrisi
gdc.oaire.popularity 3.6446923E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.89598186
gdc.openalex.normalizedpercentile 0.83
gdc.opencitations.count 3
gdc.plumx.crossrefcites 2
gdc.virtual.author Durdu, Akif
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.31590-ejosat.819735-1375257 (2).pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format