Haycam Vs Eigencam for Weakly-Supervised Object Detection Across Varying Scales

dc.contributor.author Örnek, Ahmet Haydar
dc.contributor.author Ceylan, Murat
dc.date.accessioned 2024-10-10T16:05:59Z
dc.date.available 2024-10-10T16:05:59Z
dc.date.issued 2024
dc.description.abstract When a classification process is performed using Class Activation Maps, which is one of the Explainable Artificial Intelligence approaches, the areas influencing the classification on the input image can be revealed. In other words, it is demonstrated which part of the image the classifier model looks at to make a decision. In this study, a 200-class classification model was trained using the open-source dataset CUB 200 2011, and the classification results were visualized using the EigenCAM and HayCAM methods. When comparing object detection performances based on the areas influencing classification, the EigenCAM method reaches an IoU (Intersection over Union) value of 30.88%, while the HayCAM method reaches a value of 41.95%. The obtained results indicate that outputs derived using Principal Component Analysis (HayCAM) are better than those obtained using Singular Value Decomposition (EigenCAM). en_US
dc.identifier.doi 10.17780/ksujes.1430479
dc.identifier.issn 1309-1751
dc.identifier.uri https://doi.org/10.17780/ksujes.1430479
dc.identifier.uri https://search.trdizin.gov.tr/tr/yayin/detay/1261771
dc.identifier.uri https://hdl.handle.net/20.500.13091/6406
dc.language.iso en en_US
dc.relation.ispartof KSÜ Mühendislik Bilimleri Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Haycam Vs Eigencam for Weakly-Supervised Object Detection Across Varying Scales en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ceylan, Murat
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp Huawei Türkiye R&D Center, Service Application DC, Istanbul 34764, Türkiye -- Konya Teknik Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü, Konya 42130, Türkiye en_US
gdc.description.endpage 1088 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1078 en_US
gdc.description.volume 27 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4402119499
gdc.identifier.trdizinid 1261771
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Bilgisayar Görüşü
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords explainable artificial intelligence;activation map;deep learning;eigencam;haycam
gdc.oaire.keywords Görüntü İşleme
gdc.oaire.keywords Computer Vision
gdc.oaire.keywords Image Processing
gdc.oaire.keywords Derin Öğrenme
gdc.oaire.keywords açıklanabilir yapay zeka;aktivasyon haritası;derin öğrenme;eigencam;haycam
gdc.oaire.popularity 2.3737945E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.17
gdc.opencitations.count 0
gdc.virtual.author Ceylan, Murat
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files