Heart Disease Detection From Neonatal Infrared Thermograms Using Multiresolution Features and Data Augmentation

dc.contributor.author Savaşcı, Duygu
dc.contributor.author Ceylan, Murat
dc.contributor.author Örnek, Ahmet Haydar
dc.contributor.author Konak, Murat
dc.contributor.author Soylu, Hanifi
dc.date.accessioned 2021-12-13T10:38:38Z
dc.date.available 2021-12-13T10:38:38Z
dc.date.issued 2020
dc.description.abstract Monitoring temperature changes of infants in the neonatal intensive care unit is very important. Especially for premature and very low birthweight infants, determining temperature changes in their skin immediately is extremely significant for follow-up processes. The development of medical infrared thermal imaging technologies provides accurate and contact-free measurement of body temperature. This method is used to detect thermal radiation emitted from the body to obtain skin temperature distributions. The purpose of this study is to develop an analysis system based on infrared thermal imaging to classify neonates who are healthy and suffering from heart disease using their skin temperature distribution. In this study, 258 infrared thermograms obtained applying data augmentation on 43 infrared thermograms captured from the Neonatal Intensive Care Unit were used. The following operations were performed: firstly, images were segmented to eliminate unnecessary details on the thermogram. Secondly, the features of the image were extracted applying Discrete Wavelet Transform (DWT), Ridgelet Transform (RT), Curvelet Transform (CuT), and Contourlet Transform (CoT) which are multiresolution analysis methods. Finally, these features are classified as healthy and unhealthy using classification methods such as Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest (RF). The best results were obtained with SVM as 96.12% of an accuracy, 94.05% of a sensitivity and 98.28% of a specificity. en_US
dc.identifier.doi 10.18201/ijisae.2020158886
dc.identifier.issn 2147-6799
dc.identifier.issn 2147-6799
dc.identifier.scopus 2-s2.0-85091499575
dc.identifier.uri https://app.trdizin.gov.tr/makale/TXpjME16QTJOZz09
dc.identifier.uri https://hdl.handle.net/20.500.13091/1251
dc.language.iso en en_US
dc.relation.ispartof International Journal of Intelligent Systems and Applications in Engineering en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Heart Disease Detection From Neonatal Infrared Thermograms Using Multiresolution Features and Data Augmentation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 36 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 28 en_US
gdc.description.volume 8 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3012440038
gdc.identifier.trdizinid 374306
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.8028562E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Artificial Neural Network, Data Augmentation, Infrared Thermal Imaging, Neonatal, Multiresolution Analysis Methods, Random Forest, Support Vector Machine.
gdc.oaire.popularity 5.2094795E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.88000658
gdc.openalex.normalizedpercentile 0.75
gdc.opencitations.count 5
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.virtual.author Ceylan, Murat
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
c74bbd51-5823-4024-980b-8f976cfe3268.pdf
Size:
906.73 KB
Format:
Adobe Portable Document Format