On square Tribonacci Lucas numbers

dc.contributor.author Irmak, Nurettin
dc.date.accessioned 2022-05-23T20:07:32Z
dc.date.available 2022-05-23T20:07:32Z
dc.date.issued 2021
dc.description.abstract The Tribonacci-Lucas sequence {Sn} is defined by the recurrence relation Sn+3 = Sn+2 + Sn+1 + Sn with S0 = 3, S1 = 1, S2 = 3. In this note, we show that 1 is the only perfect square in Tribonacci-Lucas sequence for (Formula presented) (mod 32) and (Formula presented) (mod 96). © 2021, Hacettepe University. All rights reserved. en_US
dc.identifier.doi 10.15672/hujms.651786
dc.identifier.issn 2651-477X
dc.identifier.scopus 2-s2.0-85126300490
dc.identifier.uri https://doi.org/10.15672/hujms.651786
dc.identifier.uri https://app.trdizin.gov.tr/makale/TkRrMU9ERTBOQT09
dc.identifier.uri https://hdl.handle.net/20.500.13091/2399
dc.language.iso en en_US
dc.publisher Hacettepe University en_US
dc.relation.ispartof Hacettepe Journal of Mathematics and Statistics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Squares en_US
dc.subject Tribonacci Lucas sequence en_US
dc.subject Tribonacci sequence en_US
dc.title On square Tribonacci Lucas numbers en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 24477018800
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Mühendislik Temel Bilimleri Bölümü en_US
gdc.description.endpage 1657 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1652 en_US
gdc.description.volume 50 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3209611475
gdc.identifier.trdizinid 495814
gdc.identifier.wos WOS:000731750000006
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Matematik
gdc.oaire.keywords Tribonacci Lucas sequence
gdc.oaire.keywords Tribonacci sequence
gdc.oaire.keywords Fibonacci and Lucas numbers and polynomials and generalizations
gdc.oaire.keywords squares
gdc.oaire.keywords Mathematical Sciences
gdc.oaire.keywords Diophantine equations in many variables
gdc.oaire.keywords Tribonacci sequence;Tribonacci Lucas sequence;squares
gdc.oaire.popularity 1.5483943E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.16
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Irmak, Nurettin
gdc.wos.citedcount 1
relation.isAuthorOfPublication ca5eefdf-09f9-4944-a8c5-2172dab26a09
relation.isAuthorOfPublication.latestForDiscovery ca5eefdf-09f9-4944-a8c5-2172dab26a09

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ef759873-9761-46b1-8252-2e260f431742.pdf
Size:
157.61 KB
Format:
Adobe Portable Document Format