Evaluating Action Durations for Adaptive Traffic Signal Control Based on Deep Q-Learning

dc.contributor.author Çeltek, Seyit Alperen
dc.contributor.author Durdu, Akif
dc.contributor.author Ali, Muzamil Eltejani Mohammed
dc.date.accessioned 2021-12-13T10:24:04Z
dc.date.available 2021-12-13T10:24:04Z
dc.date.issued 2021
dc.description.abstract Adaptive traffic signal control is the control technique that adjusts the signal times according to traffic conditions and manages the traffic flow. Reinforcement learning is one of the best algorithms used for adaptive traffic signal controllers. Despite many successful studies about Reinforcement Learning based traffic control, there remains uncertainty about what the best actions to actualize adaptive traffic signal control. This paper seeks to understand the performance differences in different action durations for adaptive traffic management. Deep Q-Learning has been applied to a traffic environment for adaptive learning. This study evaluates five different action durations. Also, this study proposes a novel approach to the Deep Q-Learning based adaptive traffic control system for determine the best action. Our approach does not just aim to minimize delay time by waiting time during the red-light signal also aims to decrease delay time caused by vehicles slowing down when approaching the intersection and caused by the required time to accelerate after the green light signal. Thus the proposed strategy uses not just information of intersection also uses the data of adjacent intersection as an input. The performances of these methods are evaluated in real-time through the Simulation of Urban Mobility traffic simulator. The output of this paper indicate that the short action times increase the traffic control system performances despite more yellow signal duration. The results clearly shows that proposed method decreases the delay time. en_US
dc.identifier.doi 10.1007/s13177-021-00262-5
dc.identifier.issn 1348-8503
dc.identifier.issn 1868-8659
dc.identifier.scopus 2-s2.0-85109132717
dc.identifier.uri https://doi.org/10.1007/s13177-021-00262-5
dc.identifier.uri https://hdl.handle.net/20.500.13091/348
dc.language.iso en en_US
dc.publisher SPRINGER en_US
dc.relation.ispartof INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Traffic Signal Control en_US
dc.subject Reinforcement Learning en_US
dc.subject Deep Q-Learning en_US
dc.subject Action Durations en_US
dc.subject Computational Intelligence en_US
dc.subject Optimization en_US
dc.subject Network en_US
dc.subject System en_US
dc.title Evaluating Action Durations for Adaptive Traffic Signal Control Based on Deep Q-Learning en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Durdu, Akif/0000-0002-5611-2322
gdc.author.scopusid 57170848000
gdc.author.scopusid 55364612200
gdc.author.scopusid 57221004288
gdc.author.wosid Durdu, Akif/AAQ-4344-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 571 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 557 en_US
gdc.description.volume 19 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W3176077785
gdc.identifier.wos WOS:000668078100001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.2235574E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 9.250453E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0502 economics and business
gdc.oaire.sciencefields 05 social sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.19549618
gdc.openalex.normalizedpercentile 0.8
gdc.opencitations.count 6
gdc.plumx.mendeley 16
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 8
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s13177-021-00262-5.pdf
Size:
2.82 MB
Format:
Adobe Portable Document Format