Evaluating Action Durations for Adaptive Traffic Signal Control Based on Deep Q-Learning

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

SPRINGER

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Adaptive traffic signal control is the control technique that adjusts the signal times according to traffic conditions and manages the traffic flow. Reinforcement learning is one of the best algorithms used for adaptive traffic signal controllers. Despite many successful studies about Reinforcement Learning based traffic control, there remains uncertainty about what the best actions to actualize adaptive traffic signal control. This paper seeks to understand the performance differences in different action durations for adaptive traffic management. Deep Q-Learning has been applied to a traffic environment for adaptive learning. This study evaluates five different action durations. Also, this study proposes a novel approach to the Deep Q-Learning based adaptive traffic control system for determine the best action. Our approach does not just aim to minimize delay time by waiting time during the red-light signal also aims to decrease delay time caused by vehicles slowing down when approaching the intersection and caused by the required time to accelerate after the green light signal. Thus the proposed strategy uses not just information of intersection also uses the data of adjacent intersection as an input. The performances of these methods are evaluated in real-time through the Simulation of Urban Mobility traffic simulator. The output of this paper indicate that the short action times increase the traffic control system performances despite more yellow signal duration. The results clearly shows that proposed method decreases the delay time.

Description

Keywords

Traffic Signal Control, Reinforcement Learning, Deep Q-Learning, Action Durations, Computational Intelligence, Optimization, Network, System

Turkish CoHE Thesis Center URL

Fields of Science

0502 economics and business, 05 social sciences, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q3

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
6

Source

INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH

Volume

19

Issue

3

Start Page

557

End Page

571
PlumX Metrics
Citations

Scopus : 10

Captures

Mendeley Readers : 16

SCOPUS™ Citations

10

checked on Feb 03, 2026

Web of Science™ Citations

8

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.19549618

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

15

LIFE ON LAND
LIFE ON LAND Logo