Automated Elimination of Eog Artifacts in Sleep Eeg Using Regression Method
| dc.contributor.author | Dursun, Mehmet | |
| dc.contributor.author | Özşen, Seral | |
| dc.contributor.author | Güneş, Salih | |
| dc.contributor.author | Akdemir, Bayram | |
| dc.contributor.author | Yosunkaya, Şebnem | |
| dc.date.accessioned | 2021-12-13T10:26:50Z | |
| dc.date.available | 2021-12-13T10:26:50Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | Sleep electroencephalogram (EEG) signal is an important clinical tool for automatic sleep staging process. Sleep EEG signal is effected by artifacts and other biological signal sources, such as electrooculogram (EOG) and electromyogram (EMG), and since it is effected, its clinical utility reduces. Therefore, eliminating EOG artifacts from sleep EEG signal is a major challenge for automatic sleep staging. We have studied the effects of EOG signals on sleep EEG and tried to remove them from the EEG signals by using regression method. The EEG and EOG recordings of seven subjects were obtained from the Sleep Research Laboratory of Meram Medicine Faculty of Necmettin Erbakan University. A dataset consisting of 58 h and 6941 epochs was used in the research. Then, in order to see the consequences of this process, we classified pure sleep EEG and artifact-eliminated EEG signals with artificial neural networks (ANN). The results showed that elimination of EOG artifacts raised the classification accuracy on each subject at a range of 1%– 1.5%. However, this increase was obtained for a single parameter. This can be regarded as an important improvement if the whole system is considered. However, different artifact elimination strategies combined with different classification methods for another sleep EEG artifact may give higher accuracy differences between original and purified signals. | en_US |
| dc.identifier.doi | 10.3906/elk-1809-180 | |
| dc.identifier.issn | 1300-0632 | |
| dc.identifier.issn | 1300-0632 | |
| dc.identifier.issn | 1303-6203 | |
| dc.identifier.scopus | 2-s2.0-85065839441 | |
| dc.identifier.uri | https://doi.org/10.3906/elk-1809-180 | |
| dc.identifier.uri | https://app.trdizin.gov.tr/makale/TXpNMk5qQXpNdz09 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/510 | |
| dc.language.iso | en | en_US |
| dc.relation.ispartof | Turkish Journal of Electrical Engineering and Computer Sciences | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Bilgisayar Bilimleri, Yapay Zeka | en_US |
| dc.subject | Bilgisayar Bilimleri, Sibernitik | en_US |
| dc.subject | Bilgisayar Bilimleri, Donanım ve Mimari | en_US |
| dc.subject | Bilgisayar Bilimleri, Bilgi Sistemleri | en_US |
| dc.subject | Bilgisayar Bilimleri, Yazılım Mühendisliği | en_US |
| dc.subject | Bilgisayar Bilimleri, Teori ve Metotlar | en_US |
| dc.subject | Mühendislik, Elektrik ve Elektronik | en_US |
| dc.title | Automated Elimination of Eog Artifacts in Sleep Eeg Using Regression Method | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 1108 | en_US |
| gdc.description.issue | 2 | en_US |
| gdc.description.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 1094 | en_US |
| gdc.description.volume | 27 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W2930486860 | |
| gdc.identifier.trdizinid | 336603 | |
| gdc.identifier.wos | WOS:000463355800031 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | TR-Dizin | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.686486E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.popularity | 4.2309836E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.fwci | 0.13734756 | |
| gdc.openalex.normalizedpercentile | 0.44 | |
| gdc.opencitations.count | 2 | |
| gdc.plumx.mendeley | 11 | |
| gdc.plumx.scopuscites | 7 | |
| gdc.scopus.citedcount | 7 | |
| gdc.virtual.author | Akdemir, Bayram | |
| gdc.virtual.author | Özşen, Seral | |
| gdc.virtual.author | Güneş, Salih | |
| gdc.wos.citedcount | 6 | |
| relation.isAuthorOfPublication | b71ff576-49be-43e7-bc5e-69428299f3fa | |
| relation.isAuthorOfPublication | 0a748abb-7416-473a-972c-70aa88a8d2a3 | |
| relation.isAuthorOfPublication | a4c2e54f-b9be-4db2-ae0f-0c39d5269b9a | |
| relation.isAuthorOfPublication.latestForDiscovery | b71ff576-49be-43e7-bc5e-69428299f3fa |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- e4e00354-e438-4f8f-8251-386f73274da1.pdf
- Size:
- 449.91 KB
- Format:
- Adobe Portable Document Format
