Application of an Artificial Neural Network for Predicting Compressive and Flexural Strength of Basalt Fiber Added Lightweight

dc.contributor.author Calis, G.
dc.contributor.author Yıldızel, S.A.
dc.contributor.author Keskin, U. S.
dc.date.accessioned 2021-12-13T10:24:00Z
dc.date.available 2021-12-13T10:24:00Z
dc.date.issued 2021
dc.description.abstract Concrete is known as one of the fundamental materials in construction with its high amount of use. Lightweight concrete (LWC) can be a good alternative in reducing the environmental effect of concrete by decreasing the self-weight and dimensions of the structure. In order to reduce self-weight of concrete artificial aggregates, some of which are produced from waste materials, are utilized, and it also contributes to de-velop a sustainable material Artificial neural networks have been the focus of many scholars for long time with the purpose of analyzing and predicting the lightweight concrete compressive and flexural strengths. The artificial neural network is more powerful method in terms of providing explanation and prediction in engineering studies. It is proved that the error rate of ANN is smaller than regression method. Furthermore, ANN has superior performance over nonlinear regression model. In this paper, an ANN based system is proposed in order to provide a better understand-ing of basalt fiber reinforced lightweight concrete. In the regression analysis pre-dicted vs. experimental flexural strength, R-sqr is determined to be 86%. The most important strength contributing factors were analyzed within the scope of this study. © 2021, Tulpar Academic Publishing. All rights reserved. en_US
dc.identifier.doi 10.20528/cjcrl.2021.01.002
dc.identifier.issn 2548-0928
dc.identifier.scopus 2-s2.0-85194848000
dc.identifier.uri https://doi.org/10.20528/cjcrl.2021.01.002
dc.language.iso en en_US
dc.publisher Tulpar Academic Publishing en_US
dc.relation.ispartof Challenge Journal of Concrete Research Letters en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial Neural Network en_US
dc.subject Basalt Fiber en_US
dc.subject Compressive Strength en_US
dc.subject Lightweight Concrete en_US
dc.subject Strength Prediction en_US
dc.title Application of an Artificial Neural Network for Predicting Compressive and Flexural Strength of Basalt Fiber Added Lightweight en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0002-9517-9116 en_US
gdc.author.institutional Keskin, Ülkü Sultan en_US
gdc.author.scopusid 57211356196
gdc.author.scopusid 57120104100
gdc.author.scopusid 57212220519
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, İnşaat Mühendisliği Bölümü en_US
gdc.description.departmenttemp Calis G., Department of Civil Engineering, Karamanoğlu Mehmetbey University, Karaman, 70100, Turkey; Yıldızel S.A., Department of Civil Engineering, Karamanoğlu Mehmetbey University, Karaman, 70100, Turkey; Keskin U.S., Department of Civil Engineering, Konya Technical University, Konya, 42250, Turkey en_US
gdc.description.endpage 19 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 12 en_US
gdc.description.volume 12 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3137079020
gdc.identifier.trdizinid 410918
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Artificial Neural Network
gdc.oaire.keywords Basalt Fiber
gdc.oaire.keywords Compressive Strength
gdc.oaire.keywords Strength Prediction
gdc.oaire.keywords Lightweight Concrete
gdc.oaire.popularity 1.5483943E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.03
gdc.opencitations.count 0
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Keskin, Ülkü Sultan
relation.isAuthorOfPublication 474671c0-534c-473c-9361-9c3f7994f3bd
relation.isAuthorOfPublication.latestForDiscovery 474671c0-534c-473c-9361-9c3f7994f3bd

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
526-2791-1-PB.pdf
Size:
989.61 KB
Format:
Adobe Portable Document Format