Transfer Learning Using Alexnet With Support Vector Machine for Breast Cancer Detection

dc.contributor.author Abdulghani, Sema
dc.contributor.author Fadhil, Ahmed Freidoon
dc.contributor.author Gültekin, Seyfettin Sinan
dc.date.accessioned 2023-01-08T19:04:21Z
dc.date.available 2023-01-08T19:04:21Z
dc.date.issued 2020
dc.description.abstract Breast cancer is one of the leading causes of women death worldwide currently. Developing a computer-aided diagnosis system for breast cancer detection became an interesting problem for many researchers in recent years. Researchers focused on deep learning techniques for classification problems, including Convolutional Neural Networks (CNNs), which achieved great success. CNN is a specific class of deep, feedforward network that has obtained attention from the research community and achieved great successes, especially in biomedical image processing. In this paper, deep feature extraction methods are used which with pre-trained CNN model to classify breast cancer histopathological images from the publically available (BreakHis dataset). The data set includes two classes, benign and malignant, with four different magnification factors. A patch strategy method proposed based on the extraction of image patches for training the CNN and the combination of these patches for classification. AlexNet model is considered in this work with patch strategy, and pre-trained AlexNet is used for fine-tuning the system. Then, the Support Vector Machine (SVM) was used to classify the obtained features.The evaluation results show that the pre-trained Alexnet with SVM classification and patch strategy yields the best accuracy. Accuracy between 92% and 96% was achieved using five-fold cross-validation technique for different magnification factors. en_US
dc.identifier.doi 10.31590/ejosat.806679
dc.identifier.issn 2148-2683
dc.identifier.uri https://doi.org/10.31590/ejosat.806679
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/1136061
dc.identifier.uri https://hdl.handle.net/20.500.13091/3266
dc.language.iso en en_US
dc.relation.ispartof Avrupa Bilim ve Teknoloji Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Breast Cancer en_US
dc.subject Convolutional Neural Network en_US
dc.subject Alexnet en_US
dc.subject Transfer Learning en_US
dc.subject and Support Vector Machine Meme Kanseri en_US
dc.subject Evrişimli Sinir Ağı en_US
dc.subject Alexnet en_US
dc.subject Transfer Öğrenimi en_US
dc.subject ve Destek Vektör Makinesi en_US
dc.title Transfer Learning Using Alexnet With Support Vector Machine for Breast Cancer Detection en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Gültekin, Seyfettin Sinan
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 430 en_US
gdc.description.issue Ejosat Özel Sayı 2020 (ICCEES) en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 423 en_US
gdc.description.volume 0 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3093508433
gdc.identifier.trdizinid 1136061
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Engineering
gdc.oaire.keywords Mühendislik
gdc.oaire.keywords Breast Cancer;Convolutional Neural Network;Alexnet;Transfer Learning;Support Vector Machine
gdc.oaire.keywords Meme Kanseri;Evreşimli sinir ağları;Transfer Öğrenimi;Destek Vektör Makinesi
gdc.oaire.popularity 1.3503004E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.12
gdc.opencitations.count 0
gdc.plumx.mendeley 7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.31590-ejosat.806679-1331783.pdf
Size:
686.71 KB
Format:
Adobe Portable Document Format