Deep Learning Based Super Resolution Application for a New Data Set Consisting of Thermal Facial Images

dc.contributor.author Şenalp, Fatih Mehmet
dc.contributor.author Ceylan, Murat
dc.date.accessioned 2022-05-23T20:22:42Z
dc.date.available 2022-05-23T20:22:42Z
dc.date.issued 2022
dc.description Article; Early Access en_US
dc.description.abstract Although thermal camera systems can be used in any application that requires the detection of temperature change, thermal imaging systems are highly costly systems and this situation makes difficult the common use of thermal systems. In addition, blurry images of low quality can occur when thermal images are obtained. In this article, super resolution application has been carried out on a data set consisting of thermal face images obtained from two different thermal cameras. The specified data set was created differently from traditional methods, low resolution (LR) thermal images were obtained from a 160x120 thermal resolution camera, while high resolution (reference) images were obtained from a camera with a thermal resolution of 640x480. Later, unnecessary parts of these images were cropped and another study was carried out by focusing only on the face area. A deep learning model based on adversarial generative networks (GAN) has been developed for these applications. The success performance of the results was evaluated by the image quality metrics PSNR (peak signal to noise ratio) and SSIM (structural similarity index). It has been observed that the results of the application performed by focusing only on the facial areas are better than the results of the application with original images. In addition, this study gave positive results in terms of approximating the resolution of the thermal images obtained by the less costly thermal camera to the resolution of the thermal camera, which has a high cost and can obtain high quality images, especially visually. en_US
dc.identifier.doi 10.2339/politeknik.904675
dc.identifier.issn 1302-0900
dc.identifier.issn 2147-9429
dc.identifier.uri https://doi.org/10.2339/politeknik.904675
dc.identifier.uri https://hdl.handle.net/20.500.13091/2420
dc.language.iso tr en_US
dc.publisher Gazi Univ en_US
dc.relation.ispartof Journal Of Polytechnic-Politeknik Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Thermal imaging en_US
dc.subject super resolution en_US
dc.subject deep learning en_US
dc.subject datasets en_US
dc.subject Superresolution en_US
dc.title Deep Learning Based Super Resolution Application for a New Data Set Consisting of Thermal Facial Images en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 720
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 711
gdc.description.volume 26
gdc.description.wosquality Q4
gdc.identifier.openalex W4210461838
gdc.identifier.trdizinid 1191122
gdc.identifier.wos WOS:000752191800001
gdc.index.type WoS
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.7876665E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Engineering
gdc.oaire.keywords Mühendislik
gdc.oaire.keywords Termal görüntüleme;Süper çözünürlük;Derin öğrenme;Veri setleri
gdc.oaire.keywords Thermal imaging;Super resolution;Deep learning;Datasets
gdc.oaire.popularity 3.5956766E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0203 mechanical engineering
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.48394677
gdc.openalex.normalizedpercentile 0.51
gdc.opencitations.count 2
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 1
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 1
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.2339-politeknik.904675-1667761.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format