On the Recursive Sequence Xn+1 = Xn-7/1+xn-1xn-3xn-5

dc.contributor.author Oğul, Burak
dc.contributor.author Şimşek, Dağıstan
dc.contributor.author Abdullayev, Fahreddin
dc.contributor.author Farajzadeh, Ali
dc.date.accessioned 2022-05-23T20:23:41Z
dc.date.available 2022-05-23T20:23:41Z
dc.date.issued 2022
dc.description.abstract In this paper we are going to analyze the following difference equation x(n+1) = x(n-7)/1+x(n-1)x(n-3)x(n-5) n = 0, 1, 2,..., where x-7, x-6, x-5, x-4, x-3, x-2, x-1, x(0) is an element of (0, infinity). en_US
dc.identifier.issn 1686-0209
dc.identifier.scopus 2-s2.0-85130729756
dc.identifier.uri https://hdl.handle.net/20.500.13091/2473
dc.language.iso en en_US
dc.publisher Chiang Mai Univ, Fac Science en_US
dc.relation.ispartof Thai Journal Of Mathematics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject difference equation en_US
dc.subject rational difference equations en_US
dc.subject recursive sequence en_US
dc.subject Difference Equation en_US
dc.title On the Recursive Sequence Xn+1 = Xn-7/1+xn-1xn-3xn-5 en_US
dc.title.alternative On the Recursive Sequence X(n)(+1) = X(n-7)/1+x(n-1)x(n-)(3)x(n)(-5) en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Mühendislik Temel Bilimleri Bölümü en_US
gdc.description.endpage 119 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 111 en_US
gdc.description.volume 20 en_US
gdc.description.wosquality Q4
gdc.identifier.wos WOS:000782646300009
gdc.index.type WoS
gdc.index.type Scopus
gdc.scopus.citedcount 3
gdc.virtual.author Şimşek, Dağıstan
gdc.wos.citedcount 2
relation.isAuthorOfPublication 04a48295-e7cc-4e18-a650-8ba27bc0842a
relation.isAuthorOfPublication.latestForDiscovery 04a48295-e7cc-4e18-a650-8ba27bc0842a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
0354-51801905381S.pdf
Size:
223.44 KB
Format:
Adobe Portable Document Format