Detection of Vortex Cavitation With the Method Adaptive Neural Fuzzy Networks in the Deep Well Pumps

dc.contributor.author Durdu, Akif
dc.contributor.author Çeltek, Seyit Alperen
dc.contributor.author Orhan, Nuri
dc.date.accessioned 2022-05-23T20:22:42Z
dc.date.available 2022-05-23T20:22:42Z
dc.date.issued 2021
dc.description.abstract Nowadays submersible deep well pumps are the most used irrigation systems in agriculture field. Efficient operation and economical life of pumps is an important issue. One of the most important parameters affecting pump efficiency and life is cavitation The cavitation is one of the problems frequently faced in the pump systems that widely used in the agriculture field. The cavitation could cause more undesired effects such as loss of hydraulic performance, erosion, vibration and noise. This paper presents a novel model for the detection of vortex cavitation in the deep well pump used in the agriculture system using adaptive neural fuzzy networks. The data submergence, flow rate, power consumption, pressure values, and noise values used for training the ANFIS (Adaptive-Network Based Fuzzy Inference Systems) network are acquired from an experimental pump. In this study, we use to the sixty-seven data for training process, while the fifteen data have used for testing of our model. The average percentage error (APE) has obtained as 0.08 % and as 0.34 % respectively for 67 training data and for 15 test data. The performance of the implemented model shows the advantages of ANFIS. The result of this study shows that ANFIS can be successfully used to detect vortex cavitation. This paper has two novel contributions which are the usage of noise value on cavitation detection and find out cavitation by using adaptive neural fuzzy networks. During the cavitation, the pump parameters must change by controller for prevent unwanted pump errors. The strategy proposed could be preliminary study of automatic pump control. Also proposed novel control strategy can be used for cavitation control in agriculture irrigation pumps, because of easy set up and no need extra cost. The ANFIS based model has real-time applicable thanks to rapid and easy control. It is possible to set safe boundaries in submergence in this model. Thus, users by adjusting controllable parameters can prevent cavitation and increase pump efficiency. en_US
dc.description.sponsorship Scientific and Technical Research Council of Turkey (TUBITAK) [213O140] en_US
dc.description.sponsorship This study was supported by The Scientific and Technical Research Council of Turkey (TUBITAK, Project No:213O140) . The authors would also like to thank the Karamanoglu Mehmetbey University for providing the access MATLAB Software and Prof. Dr. Sedat Calisir. en_US
dc.identifier.doi 10.33462/jotaf.769037
dc.identifier.issn 1302-7050
dc.identifier.issn 2146-5894
dc.identifier.scopus 2-s2.0-85129667755
dc.identifier.uri https://doi.org/10.33462/jotaf.769037
dc.identifier.uri https://hdl.handle.net/20.500.13091/2428
dc.language.iso en en_US
dc.publisher Univ Namik Kemal en_US
dc.relation.ispartof Journal Of Tekirdag Agriculture Faculty-Tekirdag Ziraat Fakultesi Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Adaptive fuzzy neural networks en_US
dc.subject Cavitation en_US
dc.subject Submergence en_US
dc.subject Vortex cavitation en_US
dc.subject Deep well pumps en_US
dc.subject Fault-Diagnosis en_US
dc.subject Inference System en_US
dc.subject Anfis en_US
dc.subject Wear en_US
dc.title Detection of Vortex Cavitation With the Method Adaptive Neural Fuzzy Networks in the Deep Well Pumps en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id orhan, Nuri/0000-0002-9987-1695
gdc.author.id Durdu, Akif/0000-0002-5611-2322
gdc.author.wosid orhan, Nuri/AHD-4811-2022
gdc.author.wosid Durdu, Akif/AAQ-4344-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 624 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 613 en_US
gdc.description.volume 18 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4200231888
gdc.identifier.trdizinid 1144612
gdc.identifier.wos WOS:000754419200002
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5241729E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Uyarlanabilir bulanık sinir ağları;Kavitasyon;Dalma derinliği;Vorteks kavitasyonu;Derin kuyu pompaları
gdc.oaire.keywords Adaptive fuzzy neural networks;Cavitation;Submergence;Vortex cavitation;Deep well pumps
gdc.oaire.popularity 2.2943427E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.13648051
gdc.openalex.normalizedpercentile 0.48
gdc.opencitations.count 1
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 1
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.33462-jotaf.769037-1200916.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format