Artificial Intelligence Based High Voltage Cable Bonding To Prevent Cable Termination Faults

dc.contributor.author Akbal, Bahadır
dc.date.accessioned 2021-12-13T10:19:41Z
dc.date.available 2021-12-13T10:19:41Z
dc.date.issued 2020
dc.description.abstract Cable termination fault (CTF) is a major problem for high voltage cable lines (HVCL). Increasing of the sheath voltage (SV), zero sequence current (ZC) and current harmonic distortion (THDI) on metallic sheath (MS) of HVC are major factors for CTF. MS is grounded according to IEEE 575-1988 standard to reduce SV. However, these methods are not sufficient to prevent CTF based on ZC and THDI. The aims of this paper are minimization of SV, ZC and THDI to prevent CTF based on ZC and THDI. Thus, LSSB method is developed as a new bonding method. Also, LSSB parameters should be optimized to make the most economical and practical bonding. GA, DEA, PSO and iPSO are used optimization methods for optimization of LSSB. SV and THDI should be known for optimization of LSSB, so the forecasting methods (FM) are used as fitness function of optimization methods in LSSB optimization. The regression and hybrid artificial neural network methods are compared to determine the most suitable FM. When the optimized LSSB is used for bonding of long HVCL, SV reduces approximately 90%, ZC reduces approximately 93%, and THDI reduces approximately 70%. Thus CTF risk is minimized by using the optimized LSSB in HVCL. en_US
dc.identifier.doi 10.1016/j.epsr.2020.106513
dc.identifier.issn 0378-7796
dc.identifier.issn 1873-2046
dc.identifier.scopus 2-s2.0-85087592913
dc.identifier.uri https://doi.org/10.1016/j.epsr.2020.106513
dc.identifier.uri https://hdl.handle.net/20.500.13091/41
dc.language.iso en en_US
dc.publisher ELSEVIER SCIENCE SA en_US
dc.relation.ispartof ELECTRIC POWER SYSTEMS RESEARCH en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bonding Method en_US
dc.subject High Voltage Cable Termination en_US
dc.subject Hybrid Artificial Neural Network en_US
dc.subject Insulation Fault en_US
dc.subject Power Transmission en_US
dc.subject Danish Experience en_US
dc.subject Systems en_US
dc.subject Sheath en_US
dc.title Artificial Intelligence Based High Voltage Cable Bonding To Prevent Cable Termination Faults en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id AKBAL, BAHADIR/0000-0002-7319-1966
gdc.author.scopusid 55364837100
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 106513
gdc.description.volume 187 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3041140598
gdc.identifier.wos WOS:000556736000074
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.7316391E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9143974E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.07
gdc.opencitations.count 2
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Akbal, Bahadır
gdc.wos.citedcount 1
relation.isAuthorOfPublication b90b225e-d7cf-42d3-b274-074e30423d04
relation.isAuthorOfPublication.latestForDiscovery b90b225e-d7cf-42d3-b274-074e30423d04

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0378779620303163-main.pdf
Size:
4.2 MB
Format:
Adobe Portable Document Format