Estimation of Turkey’s Natural Gas Consumption by Machine Learning Techniques

dc.contributor.author Erdem, Osman Emin
dc.contributor.author Kesen, Saadettin Erhan
dc.date.accessioned 2021-12-13T10:26:55Z
dc.date.available 2021-12-13T10:26:55Z
dc.date.issued 2020
dc.description.abstract Technological advancements coupled with growing world population require the increasing need of energy. Natural gas is one of the most important usable energy resources. Turkey is with high external dependency on energy as it has its own limited natural and underground energy resources. Thus, in order to effectively and productively use of natural gas purchased from foreign countries and to make reliable and robust energy policies for the years ahead, it is crucial to make a reasonable and plausible prediction for natural gas consumption of Turkey. In this paper, we estimate the natural gas consumption using machine learning techniques on the basis of real monthly data representing natural gas consumption of Turkey between the years 2010 and 2018. The performances of machine learning techniques involving Artificial Neural Networks, Random Forest Tree, Regression, Time Series and Multiple Seasonality Time Series are compared in predicting the natural gas consumption of Turkey. Experimental results show that among the five techniques, artificial neural networks produce the best estimation, having the lowest mean square errors, followed by regression method. Time series shows the worst performance among all the techniques. en_US
dc.identifier.doi 10.35378/gujs.586107
dc.identifier.issn 2147-1762
dc.identifier.issn 2147-1762
dc.identifier.scopus 2-s2.0-85086758219
dc.identifier.uri https://doi.org/10.35378/gujs.586107
dc.identifier.uri https://app.trdizin.gov.tr/makale/TXpZeU5UUXlNZz09
dc.identifier.uri https://hdl.handle.net/20.500.13091/551
dc.language.iso en en_US
dc.relation.ispartof Gazi University Journal of Science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Estimation of Turkey’s Natural Gas Consumption by Machine Learning Techniques en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü en_US
gdc.description.endpage 133 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 120 en_US
gdc.description.volume 33 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W3008730914
gdc.identifier.trdizinid 362542
gdc.identifier.wos WOS:000519536100010
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.6317692E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Engineering
gdc.oaire.keywords Energy consumption;Natural gas;Estimation;Machine Learning;R language
gdc.oaire.keywords Mühendislik
gdc.oaire.popularity 4.4076107E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.39281749
gdc.openalex.normalizedpercentile 0.61
gdc.opencitations.count 4
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 15
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.virtual.author Kesen, Saadettin Erhan
gdc.wos.citedcount 3
relation.isAuthorOfPublication b70cf430-0c58-4143-81c2-c345b7b5847b
relation.isAuthorOfPublication.latestForDiscovery b70cf430-0c58-4143-81c2-c345b7b5847b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
f3688b70-4a71-45d6-adc3-fc1440015481.pdf
Size:
930.46 KB
Format:
Adobe Portable Document Format