05. Fakülteler
Permanent URI for this communityhttps://hdl.handle.net/20.500.13091/6
Browse
Browsing 05. Fakülteler by WoS Q "Q2"
Now showing 1 - 20 of 294
- Results Per Page
- Sort Options
Article Citation - WoS: 11Citation - Scopus: 15Accuracy Assessment of Dems Derived From Multiple Sar Data Using the Insar Technique(SPRINGER HEIDELBERG, 2021) Karabörk, Hakan; Makineci, Hasan Bilgehan; Orhan, Osman; Karakuş, PınarIn this study, digital elevation models (DEMs) derived from AlosPalsar data (Japanese Space Agency-JAXA), Sentinel-1A data, and Envisat ASAR data (European Space Agency-ESA) were compared by using a global navigation satellite system (GNSS). In addition, AW3D30, SRTM, and ASTER GDEM (open-access DEMs) data were also included in the accuracy evaluation. The DEM accuracies were investigated in three different terrain types, namely a plain area, mountainous area and agricultural area, and compared at elevation values on a pixel-based. The accuracy obtained from the ALOS PALSAR satellite data was found to be more reliable for all three terrain types. The standard deviation and root mean square values were calculated and compared to each other. The results of the accuracy assessments showed that the best result for the plain area was obtained with the Sentinel-1A and SRTM data, for the mountainous area was obtained with the SRTM data and for agricultural area was obtained with the ALOS PALSAR and SRTM data.Article Citation - WoS: 1Citation - Scopus: 1An Accurate and Novel Numerical Simulation With Convergence Analysis for Nonlinear Partial Differential Equations of Burgers-Fisher Type Arising in Applied Sciences(Walter De Gruyter Gmbh, 2022) Kürkçü, Ömür Kuvanc; Sezer, MehmetIn this study, the second-order nonlinear partial differential equations of Burgers-Fisher type are considered under a unique formulation by introducing a novel highly accurate numerical method based on the Norlund rational polynomial and matrix-collocation computational system. The method aims to obtain a sustainable approach since it contains the rational structure of the Norlund polynomial. A unique computer program module, which involves very few routines, is constructed to discuss the precision and efficiency of the method and these few steps are described via an algorithm. A residual function is employed in both the error and convergence analyses with mean value theorem for double integrals. The considered equations in the numerical tests stand for model phenomena arising widely in applied sciences. Graphical and numerical comparisons provide a clear observation about the consistency of the method. All results prove that the method is highly accurate, eligible, and provides the ultimate operation for aforementioned problems.Article Citation - WoS: 24Citation - Scopus: 40An Adaptive Method for Traffic Signal Control Based on Fuzzy Logic With Webster and Modified Webster Formula Using Sumo Traffic Simulator(IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2021) Ali, Muzamil Eltejani Mohammed; Durdu, Akif; Çeltek, Seyit Alperen; Yılmaz, AlperIn the past, the Webster optimal cycle time formula was limited to calculate the optimal cycle from historical data for fixed-time traffic signal control. This paper focuses on the design of an adaptive traffic signal control based on fuzzy logic with Webster and modified Webster's formula. These formulas are used to calculate the optimal cycle time depending on the current traffic situation which applying in the next cycle. The alternation of the traffic condition between two successive cycles is monitored and handled through the fuzzy logic system to compensate the fluctuation. The obtained optimal cycle time is used to determine adaptively the effective phase green times i.e. is used to determine adaptively the maximum allowable extension limit of the green phase in the next cycle. The SUMO traffic simulator is used to compare the results of the proposed adaptive control methods with fuzzy logic-based traffic control, and fixed-time Webster and modified Webster-based traffic control methods. The proposed methods are tested on an isolated intersection. In this study, real field-collected data obtained from three, four, and five approaches intersections in Kilis/Turkey are used to test the performance of the proposed methods. In addition, to examine the efficiency of the proposed techniques at heavy demands, the arbitrary demands are generated by SUMO for a four approaches intersection. The obtained simulation results indicate that the proposed methods overperform the fixed time and fuzzy logic-based traffic control methods in terms of average vehicular delay, speed, and travel time.Article Citation - WoS: 5Citation - Scopus: 6Adrenal Tumor Characterization on Magnetic Resonance Images(WILEY, 2020) Barstuğan, Mücahid; Ceylan, Rahime; Asoğlu, Semih; Cebeci, Hakan; Koplay, MustafaAdrenal tumors occur on adrenal glands and are generally detected on abdominal area scans. Adrenal tumors, which are incidentally detected, release vital hormones. These types of tumors that can be malignant affect body metabolism. Both of benign and malign adrenal tumors can have a similar size, intensity, and shape, this situation may lead to wrong decision during diagnosis and characterization of tumors. Thus, biopsy is done to confirm diagnosis of tumor types. In this study, adrenal tumor characterization is handled by using magnetic resonance images. In this way, it is wanted that patient can be disentangled from one or more imaging modalities (some of them can includes X-ray) and biopsy. An adrenal tumor image set, which includes five types of adrenal tumors and has 112 benign tumors and 10 malign tumors, was used in this study. Two data sets were created from the adrenal tumor image set by manually/semiautomatically segmented adrenal tumors and feature sets of these data sets are constituted by different methods. Two-dimensional gray-level co-occurrence matrix (2D-GLCM), gray-level run-length matrix (GLRLM), and two-dimensional discrete wavelet transform (2D-DWT) methods were analyzed to reveal the most effective features on adrenal tumor characterization. Feature sets were classified in two ways: benign/malign (binary classification) and type characterization (multiclass classification). Support vector machine and artificial neural network classified feature sets. The best performance on benign/malign classification was obtained by the 2D-GLCM feature set. The best results were assessed with sensitivity, specificity, accuracy, precision, and F-score metrics and they were 99.17%, 90%, 98.4%, 99.17%, and 99.13%, respectively. The highest classification performance on type characterization was obtained by the 2D-DWT feature set as 59.62%, 96.17%, 93.19%, 54.69%, and 54.94% for sensitivity, specificity, accuracy, precision, and F-score metrics, respectively.Article Citation - WoS: 18Citation - Scopus: 24Adsorption of Cr(vi) Onto Cross-Linked Chitosan-Almond Shell Biochars: Equilibrium, Kinetic, and Thermodynamic Studies(SPRINGER INTERNATIONAL PUBLISHING AG, 2021) Altun, Türkan; Ecevit, Hüseyin; Kar, Yakup; Çiftçi, BirsenIn this study, to remove Cr(VI) from the solution environment by adsorption, the almond shell was pyrolyzed at 400 and 500 degrees C and turned into biochar (ASC400 and ASC500) and composite adsorbents were obtained by coating these biochars with chitosan (Ch-ASC400 and Ch-ASC500). The resulting biochars and composite adsorbents were characterized using Fourier transform infrared (FTIR) spectroscopy; Brunauer, Emmett, and Teller (BET) surface area; scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX); and the point of zero charge pH (pH(pzc)) analyses. The parameters affecting the adsorption were examined with batch adsorption experiments and the optimum parameters for the efficient adsorption of Cr(VI) in 55 mg L-1 solution were determined as follows; adsorbent dosages: 5 g L-1 for biochars, 1.5 g L-1 for composite adsorbents, contact time: 120 min, pH: 1.5. It was seen that the temperature did not affect the adsorption much. Under optimum conditions, Cr(VI) adsorption capacities of ASC400, ASC500, Ch-ASC400, and Ch-ASC500 adsorbents are 11.33, 11.58, 37.48, and 36.65 mg g(-1), respectively, and their adsorption percentages are 95.2%, 97.5%, 94.3%, and 94.0%, respectively. Adsorption data were applied to Langmuir, Freundlich, Scatchard, Dubinin-Radushkevic, and Temkin isotherms and pseudo-first-order kinetic model, pseudo-second-order kinetic model, intra-particle diffusion model, and film diffusion model. The adsorption data fitted well to the Langmuir isotherm and pseudo-second-order kinetic models. From these results, it was determined that chemical adsorption is the dominant mechanism. Also, both intra-particle diffusion and film diffusion is effective in the adsorption rate. For all adsorbents, the Langmuir isotherm proved to be the most appropriate model for adsorption. The maximum monolayer adsorption capacities calculated from this model are 24.15 mg g(-1), 27.38 mg g(-1), 54.95 mg g(-1), and 87.86 mg g(-1) for ASC400, ASC500, Ch-ASC400, and Ch-ASC500, respectively. The enthalpy change, entropy change, and free energy changes during the adsorption process were calculated and the adsorption was also examined thermodynamically. As a result, adsorption occurs spontaneously for all adsorbents.Article Citation - WoS: 42Citation - Scopus: 49Adsorption of Malachite Green and Methyl Violet 2b by Halloysite Nanotube: Batch Adsorption Experiments and Box-Behnken Experimental Design(Elsevier Ltd, 2022) Altun, Türkan; Ecevit, HüseyinDyes constitute a significant part of the pollutants in industrial wastewater. In this study, halloysite nanotube (HNT) was used for adsorption of malachite green and methyl violet 2B dyes from the solution. Using batch adsorption experiments and response surface method, parameters affecting adsorption have been optimized. As a consequence of the batch experiments, after 60 min, the adsorption equilibrium state was achieved at 3 g L?1 HNT dosage, 125 mg L?1 dye concentration and natural solution pH. Temperature did not significantly affect the adsorption. The adsorption equilibrium data can be said to have fitted the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms well for the both dyes. The Langmuir maximum monolayer malachite green and methyl violet 2B adsorption capacities (As) of HNT are 74.95 mg g?1 and 67.87 mg g?1, respectively. Adsorption processes are more consistent with the pseudo-second-order kinetic model. In addition, both intra-particle diffusion and film diffusion are effective as rate-determining steps in adsorption. Thermodynamic calculations showed that the adsorption is exothermic and spontaneous. The regeneration of HNT after adsorption was confirmed in five cycles. By using the Box-Behnken response surface method, the parameters affecting the adsorption process were modeled, the effects of these parameters on the adsorption efficiency were expressed mathematically and the optimum operating parameters were determined. © 2022Review Citation - WoS: 25Citation - Scopus: 29Aerogels as Promising Materials for Antibacterial Applications: a Mini-Review(ROYAL SOC CHEMISTRY, 2021) Kaya Güzel, Gülcihan; Aznar, Elena; Deveci, Hüseyin; Martinez-Manez, RamonThe increasing cases of bacterial infections originating from resistant bacteria are a serious problem globally and many approaches have been developed for different purposes to treat bacterial infections. Aerogels are a novel class of smart porous materials composed of three-dimensional networks. Recently, aerogels with the advantages of ultra-low density, high porosity, tunable particle and pore sizes, and biocompatibility have been regarded as promising carriers for the design of delivery systems. Recently, aerogels have also been provided with antibacterial activity through loading of antibacterial agents, incorporation of metal/metal oxides and via surface functionalization and coating with various functional groups. In this mini-review, the synthesis of aerogels from both conventional and low-cost precursors is reported and examples of aerogels displaying antibacterial properties are summarized. As a result, it is clear that the encouraging antibacterial performance of aerogels promotes their use in many antibacterial applications, especially in the food industry, pharmaceutics and medicine.Article Citation - Scopus: 77Alginate-Coated Perlite Beads for the Efficient Removal of Methylene Blue, Malachite Green, and Methyl Violet From Aqueous Solutions: Kinetic, Thermodynamic, and Equilibrium Studies(Springer, 2019) Parlayıcı, ŞerifeEnvironmental pollution has been increasing recently due to industrialization. Many industries use dyestuffs to color their products. This work investigates the adsorption of methylene blue (MB), malachite green (MG), and methyl violet (MV) on alginate-coated perlite beads (AP). AP was prepared by a sol-gel process. The removal of MB, MG, and MV from aqueous solutions by AP as an adsorbent was tested by using a batch-type model. In order to prove the effectiveness of the study, it has been tried to obtain optimum efficiency at optimum level by working depending on mixing time (minutes), initial dye concentration (ppm), adsorbent dose (mg/L), pH, and temperature (°C). The results showed that the MB, MG, and MV adsorption process reached equilibrium within a 60-min period for AP. It has been found that the amount of adsorbed dyestuff increases with the initial dye concentration, the pH of the solution. Thermodynamic activation parameters were calculated from experimental data at different temperatures. The AP was characterized by Fourier Transform Infrared Spectroscopy (FT-IR) before and after MB, MG, and MV adsorption. The equilibrium adsorption data were described by Langmuir, Freundlich, Scatchard, Temkin and D-R isotherms. The modified Langmuir isotherm was applied to explain the experimental adsorption, and the greatest MB, MG, and MV adsorption capacity of the AP reached to 104.1, 74.6, and 149.2 mg/g, respectively. The pseudo-first and pseudo-second-order equations were used to evaluate the kinetic data, and the constants are determined. The best correlation coefficients were well described using the pseudo-second-order kinetic model. As a result, AP has claimed the possibility as an adsorbent for MB, MG, and MV removal from dilute aqueous solutions. © 2019, The Author(s).Article Citation - WoS: 5Citation - Scopus: 7Alternative Approach for Safe Disposal of Dry Olive Pomace: Pyrolysis With/Without Physical Preprocessing(SPRINGER, 2020) Dinç, Gamze; Yel, EsraThe aim of this study is to present an alternative approach for disposal by using pyrolysis for dry olive pomace (which is the leftover portion of raw olive pomace), which constitutes a problem in olive oil production facilities. In this context, dry olive pomace was pyrolyzed at 600 degrees C and two different pyrolysis durations: 5 degrees C/min heating rate without retention (total pyrolysis duration is 80 min) and 1 degrees C/min heating rate with 30-min retention after reaching target pyrolysis temperature (total pyrolysis duration is 550 min). Afterward, the effects of the dry olive pomace mixed with the olive mill wastewater and the pomace particle size during the pyrolysis process were evaluated in terms of pyrolysis product yields, inorganic contents of chars and organic fractions of bio-oil. While mixing of pomace within the wastewater resulted in an increase in the pyrolysis liquid, the effects of pomace particle size on pyrolysis product yields changed based on the pyrolysis conditions. A decrease in the particle size from 2 to 0.85 mm resulted in an increase in gas by 37.3% and a decrease in liquid by 37% at the pyrolysis process of 80 min. Furthermore, the decrease in the pomace size in grinding preprocess enhanced pyrolysis liquid quality in terms of a decrease in oxygenated compounds by 5-13% and an increase in aliphatic compounds by 7-20% at both pyrolysis durations. Consequently, dry olive pomace pyrolysis can be stated as one of the effective alternatives for safe disposal by converting waste into useful end products. Graphic abstractArticle Citation - WoS: 9Citation - Scopus: 10Alternative System Design for High Temperature Solid Particle Erosion Wear Problem(SPRINGER/PLENUM PUBLISHERS, 2021) Demirci, Musa; Bağcı, MehmetIn order to simulate the wear behavior of materials subjected to solid particle erosion due to high temperature as well as velocity effect in operating conditions such as power plants and jet engines, ASTM G76 standard is not sufficient and test rig compliant with ASTM G211-14 standard must be put forward. In this context, a test rig, alternative to existing systems where solid particle erosion wear experiments can be performed in compliance with high temperature (similar to 700 degrees C) and particle impact velocity (similar to 150 m/s) conditions, has been designed and produced. In order to ensure the widespread use of this test rig, a resistance wire system was used to reach high temperatures of the heating system by achieving a different design solution. In the setup of this design, the perfect gas equation, heating power and ohm laws are also used. In addition, the designs of specimen fixture and particle feeding system, which are the determining parameters in erosion wear tests, have been updated. With the produced test rig; solid particle erosion experiments were carried out using Inconel 718 test specimens at 600 degrees C temperature, similar to 97 m/s erosive particle impact velocity and three different erosive particle impact angles (30 degrees, 60 degrees and 90 degrees). In the experiments, especially the change of temperature over time was confirmed by the data obtained from both the test rig and the specimens. GraphicArticle Citation - WoS: 3Citation - Scopus: 6Analysis of Machine Learning Classification Approaches for Predicting Students' Programming Aptitude(MDPI, 2023) Çetinkaya, Ali; Baykan, Ömer Kaan; Kırgız, HavvaWith the increasing prevalence and significance of computer programming, a crucial challenge that lies ahead of teachers and parents is to identify students adept at computer programming and direct them to relevant programming fields. As most studies on students' coding abilities focus on elementary, high school, and university students in developed countries, we aimed to determine the coding abilities of middle school students in Turkey. We first administered a three-part spatial test to 600 secondary school students, of whom 400 completed the survey and the 20-level Classic Maze course on Code.org. We then employed four machine learning (ML) algorithms, namely, support vector machine (SVM), decision tree, k-nearest neighbor, and quadratic discriminant to classify the coding abilities of these students using spatial test and Code.org platform data. SVM yielded the most accurate results and can thus be considered a suitable ML technique to determine the coding abilities of participants. This article promotes quality education and coding skills for workforce development and sustainable industrialization, aligned with the United Nations Sustainable Development Goals.Article Citation - WoS: 8Citation - Scopus: 8Ancient Isaura Quarries in and Around Zengibar Castle (bozkir, Konya), Central Anatolia, Turkey(SPRINGER HEIDELBERG, 2020) Gökçe, Mehmedi Vehbi; İnce, İsmail; Okuyucu, Cengiz; Doğanay, Osman; Fener, MustafaZengibar Castle was built by the Isaurian during antique ages on the summit of Mount Asar, approximately 20 km west of the town of Bozkir, Konya, Turkey. The aims of this study are to determine the lithological, petrographic, and mechanical characteristics of the building stones that were used to construct the walls and buildings in Zengibar Castle in order to determine the quarrying techniques of these stones and to determine which structures they were used in. A number of antique quarries of various sizes were located in Isaura, four of which produced a significantly higher volume of building stones. These antique quarries were mostly located on hillsides in carbonate rock of the Late Triassic Dutdere formation located in the Bolkardagi Units and were run phase by phase. The porosity range of the rocks was found to be between 0.85 and 0.90% and the dry density and uniaxial compressive strength were found to range from 2.67 to 2.68 g/cm(3)and 83.10 to 96.60 MPa, respectively. The results of this study suggest that the stones that were quarried in these quarries were used as the main building material or flooring material in various constructions in Zengibar Castle, including religious buildings such as temples and chapels, social buildings such as dwellings, theaters, baths, fountains, and cemeteries, defense and security structures such as watchtowers, fortification walls, and city gates, in monumental tombs, and in stones in which reliefs and inscriptions were carved.Article Citation - WoS: 35Citation - Scopus: 47Application of Sequencing Batch Biofilm Reactor (sbbr) in Dairy Wastewater Treatment(KOREAN INSTITUTE CHEMICAL ENGINEERS, 2019) Öztürk, Arzu; Aygün, Ahmet; Nas, BilgehanApplication of lab-scale sequencing batch (SBR) and sequencing batch biofilm reactors (SBBR) for treatment of dairy wastewater was investigated under organic loading of 1,130-1,560 gBOD(5)/m(3)d. The main characteristics of the dairy wastewater were: pH=4.9, chemical oxygen demand (COD)=16,264 mg/l; biological oxygen demand (BOD5)=10,536 mg/l, PO4-P=342 mg/l; total nitrogen (TN)=224 mg/l. SBBR was filled with the Kaldnes K1 biocarrier at 30% of the volume of empty reactor. The SBR and SBBR were operated in fixed 24 h cycles, each consisting of 30 min fill up, 22 h aeration, 1.5 h settle, 30 min decant, and idle with a hydraulic retention time (HRT) of 8 days. Operational parameters such as pH, dissolved oxygen (DO), mixed liquor suspended solid (MLSS), solids retention time (SRT) and sludge volume index (SVI) were monitored during the whole cycle. The effects of these parameters on the COD, nitrogen and phosphorus removal were discussed in this paper. As a result, adding biocarrier to the reactor had a positive effect on organic with COD removal of 63.5% for SBR and 81.8% for SBBR and nutrient removal with ammonium removal of 66.0% for SBR and 85.1% for SBBR in treatment of dairy wastewater.Article Citation - WoS: 13Citation - Scopus: 18Application of the Maturity Model in Industrial Corporations(Mdpi, 2022) Ünal, Cihan; Sungur, Cemil; Yıldırım, HakanEnterprises need to evaluate for themselves whether they are ready for Industry 4.0 to survive and develop in the era of the Fourth Industrial Revolution. Therefore, it is necessary to conceptualize or develop an Industry 4.0 readiness and maturity model with basic model dimensions. The present study aimed to review the maturity models available in the literature and to develop and implement a comprehensive maturity model that would eliminate the problems in the existing models. Most maturity models developed lack vital dimensions such as laws, incentives, and corporate culture. While developing the model, AHP and expert opinions were used to determine the dimension weights. The model was applied to 87 businesses in various industries at the Ankara Chamber of Industry Industrial Park in Turkey. The developed model calculates the maturity level of the enterprise for six dimensions. The data on 61 corporations where Industry 4.0 technologies were adopted were analyzed based on demographic variables such as the year of establishment, industry, size, capital, and turnover. These findings demonstrated that Industry 4.0 was introduced recently in Turkey and businesses are required to take further steps to keep up with the global digital transformation. Since the number of industries and corporations that are aware of the Industry 4.0 technologies is limited in Ankara, Turkey, only a few businesses adopted the Industry 4.0 technologies. This developed model will make an important contribution to the literature with its unique dimensions. It would pave the way for further research in various industries in Turkey and other nations where Industry 4.0 investments are new.Article Citation - WoS: 1Citation - Scopus: 2Artificial Intelligence Based High Voltage Cable Bonding To Prevent Cable Termination Faults(ELSEVIER SCIENCE SA, 2020) Akbal, BahadırCable termination fault (CTF) is a major problem for high voltage cable lines (HVCL). Increasing of the sheath voltage (SV), zero sequence current (ZC) and current harmonic distortion (THDI) on metallic sheath (MS) of HVC are major factors for CTF. MS is grounded according to IEEE 575-1988 standard to reduce SV. However, these methods are not sufficient to prevent CTF based on ZC and THDI. The aims of this paper are minimization of SV, ZC and THDI to prevent CTF based on ZC and THDI. Thus, LSSB method is developed as a new bonding method. Also, LSSB parameters should be optimized to make the most economical and practical bonding. GA, DEA, PSO and iPSO are used optimization methods for optimization of LSSB. SV and THDI should be known for optimization of LSSB, so the forecasting methods (FM) are used as fitness function of optimization methods in LSSB optimization. The regression and hybrid artificial neural network methods are compared to determine the most suitable FM. When the optimized LSSB is used for bonding of long HVCL, SV reduces approximately 90%, ZC reduces approximately 93%, and THDI reduces approximately 70%. Thus CTF risk is minimized by using the optimized LSSB in HVCL.Article Citation - WoS: 19Citation - Scopus: 24Bacteria Foraging Optimisation Algorithm Based Optimal Control for Doubly-Fed Induction Generator Wind Energy System(INST ENGINEERING TECHNOLOGY-IET, 2020) Bakır, Hale; Merabet, Adel; Dhar, Rupak Kanti; Kulaksız, Ahmet AfşinIn this study, an optimisation method, based on bacteria foraging, is investigated to tune the parameters of the proportional-integral (PI) controllers in a doubly-fed induction generator (DFIG) wind energy system connected to the grid. The generator is connected to the grid directly at the stator and through the back-to-back converter at the rotor. The control system includes PI controllers, at the rotor side, to regulate the rotor currents and PI controller to regulate the dc-link voltage for efficient power transfer. The control parameters, of three PI controllers, are optimised offline using the bacteria foraging optimisation algorithm and a modelled DFIG wind energy system. Various performance criteria, based on the tracking errors, are used to assess the efficiency of the optimisation method. Furthermore, the conventional tuning method and genetic algorithm optimisation method are conducted and compared to the bacteria foraging optimisation method to demonstrate its advantages. The optimised control parameters are evaluated on a DFIG wind energy experimental setup. Experimental and simulation results are provided to validate the effectiveness of each optimisation method.Article Citation - WoS: 36Citation - Scopus: 44Behavior and Removal of Ciprofloxacin and Sulfamethoxazole Antibiotics in Three Different Types of Full-Scale Wastewater Treatment Plants: a Comparative Study(SPRINGER INTERNATIONAL PUBLISHING AG, 2021) Nas, Bilgehan; Dolu, Taylan; Koyuncu, SerdarDue to the inadequate removal rates of drug residues in wastewater treatment plants (WWTP), the transition of these compounds into the environment has become a serious environmental problem for ecosystems and public health. In this study, occurrence, fate, and removal of widely consumed two antibiotics, ciprofloxacin (CIP) and sulfamethoxazole (SMX), selected from fluoroquinolone and sulfonamide groups, respectively were investigated in three different types of full-scale WWTPs located in Turkey. In this context, three WWTPs consisting of advanced biological treatment (large-scale), wastewater stabilization pond (WSP) (medium-scale), and constructed wetland (CW) (small-scale) were selected. While the detected influent concentrations of CIP in WWTPs ranged between the 218.6 and 2733.5 ng/L, maximum influent concentration for SMX in the same plants was determined as 179.7 ng/L. On the other hand, although it was detected at higher concentrations in raw wastewater, CIP was significantly removed in all WWTPs with a removal efficiency ranging from >77.1 to >98.2%. However, SMX showed quite different behaviors depending on the applied wastewater treatment processes in WWTPs in terms of total removal achieved. While treated in WSP well enough (>72.2%), a serious negative removal efficiency (-133.4%) was achieved for SMX in the WWTP having advanced biological treatment. Best removal performance obtained for the both antibiotic compounds among the investigated WWTPs was the medium-scale WSP consisting of anaerobic and facultative stabilization ponds, consecutively. This situation also supported the idea that WWTPs which are operated with higher solid retention time (SRT) and hydraulic retention time (HRT) contribute positively in the removal of antibiotic compounds.Article Behaviors of Removing Diesel Oil From Water With Ps/Ti4o7 Composite Nanofibers: Modeling Diesel Oil Sorption Capacity for Tap Water and Investigation of the Effects of Ph on Sorption at Different Temperatures for Times(Springer Heidelberg, 2022) Dinçer, Kevser; Özaytekin, İlkayIn this study, pure polystyrene nanofiber and polystyrene composite nanofibers with different ratios of Ti4O7 were obtained. Diesel oil sorption of the obtained nanofibers was investigated in two experimental studies. The aim of the first was to experimentally determine the nanofiber with the fastest diesel oil sorption capacity. For this purpose, the diesel oil sorption capacity (q) was examined for both pure polystyrene (PS) nanofibers and PS nanofibers with 15 wt% and 25 wt% Ti4O7 nanoparticle additives in different volumetric mixing ratios (Vr) of diesel oil and tap water. The results of this study determined that the fastest diesel oil sorbent capacity was formed in 15 wt% Ti4O7 nanoparticle-doped PS nanofiber (PSNF2). The data were modeled with Rule-Based Mamdani Type Fuzzy Logic (RBMTF). The input parameters of RBMTF were density (D), Vr, time (t), initial mass of fibers (m(o)), and tap water sorption mass (m(w)), while the q was output parameter. The multiple coefficient of determination for q was calculated as R-2 = 0.9825. The purpose of the second experimental study was to examine the behavioral performance (Delta m) of nanoparticles-doped PS nanofibers (PSNF2), which has the fastest the diesel oil sorption capacity, at different pH and different temperatures, according to different timings. In this experimental study, it was determined that the behavior performance of PSNF2 was the highest at pH7, especially at 20 degrees C for the first minute.Article Citation - WoS: 7Citation - Scopus: 9Bindmo: a New Binary Dwarf Mongoose Optimization Algorithm on Based Z-Shaped, U-Shaped, and Taper-Shaped Transfer Functions for Cec-2017 Benchmarks(Springer Science and Business Media Deutschland GmbH, 2024) Baş, EmineIntelligent swarm optimization algorithms have become increasingly common due to their success in solving real-world problems. Dwarf Mongoose Optimization (DMO) algorithm is a newly proposed intelligent swarm optimization algorithm in recent years. It was developed for continuous optimization problem solutions in its original paper. But real-world problems are not always problems that take continuously variable values. Real-world problems are often problems with discrete variables. Therefore, heuristic algorithms proposed for continuous optimization problems need to be updated to solve discrete optimization problems. In this study, DMO has been updated for binary optimization problems and the Binary DMO (BinDMO) algorithm has been proposed. In binary optimization, the search space consists of binary variable values. Transfer functions are often used in the conversion of continuous variable values to binary variable values. In this study, twelve different transfer functions were used (four Z-shaped, four U-shaped, and four Taper-shaped). Thus, twelve different BinDMO variations were obtained (BinDMO1, BinDMO2, …, BinDMO12). The achievements of BinDMO variations were tested on thirteen different unimodal and multimodal classical benchmark functions. The effectiveness of population sizes on the effectiveness of BinDMO was also investigated. When the results were examined, it was determined that the most successful BinDMO variation was BinDMO1 (with Z1-shaped transfer function). The most successful BinDMO variation was compared with three different binary heuristic algorithms selected from the literature (SO, PDO, and AFT) on CEC-2017 benchmark functions. According to the average results, BinDMO was the most successful binary heuristic algorithm. This has proven that BinDMO can be chosen as an alternative algorithm for binary optimization problems. © The Author(s) 2024.Article Citation - WoS: 11Citation - Scopus: 13Bingso: Galactic Swarm Optimization Powered by Binary Artificial Algae Algorithm for Solving Uncapacitated Facility Location Problems(Springer London Ltd, 2022) Kaya, ErsinPopulation-based optimization methods are frequently used in solving real-world problems because they can solve complex problems in a reasonable time and at an acceptable level of accuracy. Many optimization methods in the literature are either directly used or their binary versions are adapted to solve binary optimization problems. One of the biggest challenges faced by both binary and continuous optimization methods is the balance of exploration and exploitation. This balance should be well established to reach the optimum solution. At this point, the galactic swarm optimization (GSO) framework, which uses traditional optimization methods, stands out. In this study, the binary galactic swarm optimization (BinGSO) approach using binary artificial algae algorithm as the main search algorithm in GSO is proposed. The performance of the proposed binary approach has been performed on uncapacitated facility location problems (UFLPs), which is a complex problem due to its NP-hard structure. The parameter analysis of the BinGSO method was performed using the 15 Cap problems. Then, the BinGSO method was compared with both traditional binary optimization methods and the state-of-the-art methods which are used on Cap problems. Finally, the performance of the BinGSO method on the M* problems was examined. The results of the proposed approach on the M* problem set were compared with the results of the state-of-the-art methods. The results of the evaluation process showed that the BinGSO method is more successful than other methods through its ability to establish the balance between exploration and exploitation in UFLPs.

