Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Solmaz, Merve"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Histological Tissue Classification With a Novel Statistical Filter-Based Convolutional Neural Network
    (Wiley, 2024) Ünlükal, Nejat; Ülker, Erkan; Solmaz, Merve; Uyar, Kübra; Tasdemir, Sakir
    Deep networks have been of considerable interest in literature and have enabled the solution of recent real-world applications. Due to filters that offer feature extraction, Convolutional Neural Network (CNN) is recognized as an accurate, efficient and trustworthy deep learning technique for the solution of image-based challenges. The high-performing CNNs are computationally demanding even if they produce good results in a variety of applications. This is because a large number of parameters limit their ability to be reused on central processing units with low performance. To address these limitations, we suggest a novel statistical filter-based CNN (HistStatCNN) for image classification. The convolution kernels of the designed CNN model were initialized by continuous statistical methods. The performance of the proposed filter initialization approach was evaluated on a novel histological dataset and various histopathological benchmark datasets. To prove the efficiency of statistical filters, three unique parameter sets and a mixed parameter set of statistical filters were applied to the designed CNN model for the classification task. According to the results, the accuracy of GoogleNet, ResNet18, ResNet50 and ResNet101 models were 85.56%, 85.24%, 83.59% and 83.79%, respectively. The accuracy was improved by 87.13% by HistStatCNN for the histological data classification task. Moreover, the performance of the proposed filter generation approach was proved by testing on various histopathological benchmark datasets, increasing average accuracy rates. Experimental results validate that the proposed statistical filters enhance the performance of the network with more simple CNN models.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 6
    Citation - Scopus: 7
    Improving Efficiency in Convolutional Neural Networks With 3d Image Filters
    (Elsevier Sci Ltd, 2022) Uyar, Kübra; Taşdemir, Şakir; Ülker, Erkan; Ünlükal, Nejat; Solmaz, Merve
    Background and objective: The effective performance of deep networks has provided the solution to various stateof-the-art problems. Convolutional Neural Network (CNN) is accepted as an accurate, effective, and reliable practice in image-based applications. However, there is a need to use pre-trained models in case of insufficient data in CNN. This study aims to present an alternative solution to this problem with the proposed 3D image based filter generation approach with simpler CNNs for the classification of small datasets. Methods: In this study, a novel 3D image filters-based CNN (Hist3DCNN) is proposed. The proposed filter generation approach is based on 3D object images taken from different perspectives. The efficiency of Hist3DCNN is shown on a novel histological dataset that contains blood, connective, epithelium, muscle, and nerve tissue images. Various case studies are carried out with generated filters assigned as the initial value to AlexNet and the designed Hist3DCNN model that is simpler than AlexNet. Results: Based on results, the classification accuracy of AlexNet with proposed filters used in convolution layers were 84.65% and 85.34%. The accuracy was increased to 85.47% by Hist3DCNN on the histological image classification. Moreover, four different benchmark datasets were tested to demonstrate the robustness of Hist3DCNN on various datasets. Conclusions: This study provides a new aspect to literature due to 3D image-based filter generation approach to initialize convolution filters. Experimental results validate that Hist3DCNN can be used as a filter value initialization method with simple CNN models that contain less learnable parameters for the classification task of small datasets.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback