Improving Efficiency in Convolutional Neural Networks With 3d Image Filters
No Thumbnail Available
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Sci Ltd
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Background and objective: The effective performance of deep networks has provided the solution to various stateof-the-art problems. Convolutional Neural Network (CNN) is accepted as an accurate, effective, and reliable practice in image-based applications. However, there is a need to use pre-trained models in case of insufficient data in CNN. This study aims to present an alternative solution to this problem with the proposed 3D image based filter generation approach with simpler CNNs for the classification of small datasets. Methods: In this study, a novel 3D image filters-based CNN (Hist3DCNN) is proposed. The proposed filter generation approach is based on 3D object images taken from different perspectives. The efficiency of Hist3DCNN is shown on a novel histological dataset that contains blood, connective, epithelium, muscle, and nerve tissue images. Various case studies are carried out with generated filters assigned as the initial value to AlexNet and the designed Hist3DCNN model that is simpler than AlexNet. Results: Based on results, the classification accuracy of AlexNet with proposed filters used in convolution layers were 84.65% and 85.34%. The accuracy was increased to 85.47% by Hist3DCNN on the histological image classification. Moreover, four different benchmark datasets were tested to demonstrate the robustness of Hist3DCNN on various datasets. Conclusions: This study provides a new aspect to literature due to 3D image-based filter generation approach to initialize convolution filters. Experimental results validate that Hist3DCNN can be used as a filter value initialization method with simple CNN models that contain less learnable parameters for the classification task of small datasets.
Description
Keywords
Classification, CNN, Filter generation, Histological image, 3D filter
Turkish CoHE Thesis Center URL
Fields of Science
0103 physical sciences, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 01 natural sciences
Citation
WoS Q
Q2
Scopus Q
Q1

OpenCitations Citation Count
7
Source
Biomedical Signal Processing And Control
Volume
74
Issue
Start Page
103563
End Page
PlumX Metrics
Citations
CrossRef : 7
Scopus : 7
Captures
Mendeley Readers : 5
SCOPUS™ Citations
7
checked on Feb 04, 2026
Web of Science™ Citations
6
checked on Feb 04, 2026
Google Scholar™


