Histological Tissue Classification With a Novel Statistical Filter-Based Convolutional Neural Network

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Deep networks have been of considerable interest in literature and have enabled the solution of recent real-world applications. Due to filters that offer feature extraction, Convolutional Neural Network (CNN) is recognized as an accurate, efficient and trustworthy deep learning technique for the solution of image-based challenges. The high-performing CNNs are computationally demanding even if they produce good results in a variety of applications. This is because a large number of parameters limit their ability to be reused on central processing units with low performance. To address these limitations, we suggest a novel statistical filter-based CNN (HistStatCNN) for image classification. The convolution kernels of the designed CNN model were initialized by continuous statistical methods. The performance of the proposed filter initialization approach was evaluated on a novel histological dataset and various histopathological benchmark datasets. To prove the efficiency of statistical filters, three unique parameter sets and a mixed parameter set of statistical filters were applied to the designed CNN model for the classification task. According to the results, the accuracy of GoogleNet, ResNet18, ResNet50 and ResNet101 models were 85.56%, 85.24%, 83.59% and 83.79%, respectively. The accuracy was improved by 87.13% by HistStatCNN for the histological data classification task. Moreover, the performance of the proposed filter generation approach was proved by testing on various histopathological benchmark datasets, increasing average accuracy rates. Experimental results validate that the proposed statistical filters enhance the performance of the network with more simple CNN models.

Description

Keywords

artificial intelligence, CNN, deep learning, feature extraction, image classification, statistical filter, Parameter, Deep Learning, Image Processing, Computer-Assisted, Humans, Neural Networks, Computer

Turkish CoHE Thesis Center URL

Fields of Science

03 medical and health sciences, 0302 clinical medicine, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Anatomia histologia embryologia

Volume

53

Issue

4

Start Page

End Page

PlumX Metrics
Citations

Scopus : 1

Captures

Mendeley Readers : 5

SCOPUS™ Citations

1

checked on Feb 03, 2026

Web of Science™ Citations

1

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.63877855

Sustainable Development Goals

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo