Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.13091/3259
Title: | Geri Dönüştürülebilir Atıkların Materyallerine Göre Sınıflandırılması için Raspberry Pi Tabanlı Donanım Geliştirilmesi | Authors: | Sağlam, Ali Taş, Melike Baykan, Nurdan Akhan |
Keywords: | Raspberry Pi Geri Dönüşüm Görüntü İşleme Derin Öğrenme Nesne Tanıma Raspberry Pi Recycling Image Processing Deep Learning Object Recognition |
Issue Date: | 2020 | Abstract: | Hem doğanın korunması hem de sürekli artan insan ihtiyaçları için gerekli olan ve doğada kısıtlı miktarda bulunan materyallerin takviye edilmesi için ortaya çıkan “geri dönüşüm” kavramı son yıllarda en önemli konulardan birisi olmuştur. Belirli bir geri dönüşüm işlemi sonucunda, “ham maddesi yeniden kullanılabilir hale getirilebilen atıklar” olarak bilinen geri dönüştürülebilir atıkların toplanması konusu dünya genelinde üst ve yerel yönetimlerin de ilgilendiği bir problem olmuştur. Bunun için belirli merkezlere geri dönüştürülebilir atıklar için özel kutular yerleştirilmekte ve insanlar geri dönüşüm konusunda teşvik edilmeye çalışılmaktadır. Bu çalışmada, geri dönüşüm projelerinde kullanılmak üzere kâğıt, cam ve plastik atıklarının geri dönüşüm kutuları içerisinde gerçek zamanlı olarak tespit edilebilmesi için gerekli elektronik malzemeler ve yazılımlar kullanılarak bir materyal tanıma sistemi geliştirilmektedir. Sistem geri dönüşüm kutusuna atılan geri dönüştürülebilir katı atıkların materyallerini tanıyan ve materyale göre kullanıcı hesabına ücret yükleyen bir simülasyon işlevi görmektedir. Geliştirilen donanım kamera, LCD ekran, LED, IR LED, devre tahtası ve jumper kablo gibi Raspberry Pi üzerine bağlanabilen elektronik cihazları da içermektedir. Materyallerin tanınması için gerekli yazılımının geliştirilmesi aşamasında; kâğıt, cam ve plastik materyallerini içeren 845 adet resim çalışma kapsamında hazırlanmış ve bunların 662 tanesi Tensorflow nesne tanıma kütüphanesi üzerinde eğitim için kullanılmıştır. Materyallerin geliştirilen donanım tarafından gerçek zamanlı olarak algılanması ve elde edilen nesne tanıma modelinin donanım üzerinde kullanılabilmesi için Raspberry Pi içerisine OpenCV bilgisayarlı görme kütüphanesi yüklenmiştir. En son olarak, geliştirilen donanım ilgili materyallere özel ayrılmış kutular üzerine sabitlenerek sistem gerçek zamanlı olarak çalışır hale getirilmiştir. Sistemin düzgün çalıştığını doğrulamak için kutu içerisine bazı atıklar atılmış ve LCD ekran üzerinde sonuçlar görüntülenmiştir. | URI: | https://doi.org/10.31590/ejosat.802692 https://search.trdizin.gov.tr/yayin/detay/1131241 https://hdl.handle.net/20.500.13091/3259 |
ISSN: | 2148-2683 |
Appears in Collections: | Mühendislik ve Doğa Bilimleri Fakültesi Koleksiyonu TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collections |
Files in This Item:
File | Size | Format | |
---|---|---|---|
10.31590-ejosat.802692-1318950.pdf | 1.52 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
14
checked on May 29, 2023
Download(s)
4
checked on May 29, 2023
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.