Deep Learning-Based Weathering Type Recognition in Historical Stone Monuments

dc.contributor.author Hatır, Mehmet Ergün
dc.contributor.author Barstuğan, Mücahid
dc.contributor.author İnce, İsmail
dc.date.accessioned 2021-12-13T10:29:50Z
dc.date.available 2021-12-13T10:29:50Z
dc.date.issued 2020
dc.description.abstract Stone cultural heritages provide meaningful value and information about the culture, religion, economics, and esthetics of the period in which they were built. However, these heritages tend to lose their features due to weathering effects. Human-induced misrecognition in conservation and restoration practices used with these structures may lead to the disappearance of important architectural traces or serious mistakes that can affect monuments' structural integrity. In this study, recognition models based on deep learning (DL) and Artificial Neural Network (ANN) were developed to eliminate human errors that may arise in weathering recognition. For these models, fresh rock and eight different weathering types commonly observed in the historical structures of the Konya region were initially detected and photographed by field imaging studies. The DL and ANN models were created for 8598 images with these nine different types (fresh rock, flaking, contour scaling, cracking, differential erosion, black crust, efflorescence, higher plants, and graffiti). Although the accuracy rates obtained from the DL and ANN models are 99.4% and 93.95%, respectively, the recall rate (96-100%) in each class of the DL model has been determined to be higher. Based on the results of the DL classification performed with the study's model, the lowest precision rates in the testing phase were found in fresh rock (97%) and flaking (98%), while 100% precision rates were obtained in the other classification groups. (c) 2020 Elsevier Masson SAS. All rights reserved. en_US
dc.identifier.doi 10.1016/j.culher.2020.04.008
dc.identifier.issn 1296-2074
dc.identifier.issn 1778-3674
dc.identifier.scopus 2-s2.0-85084451904
dc.identifier.uri https://doi.org/10.1016/j.culher.2020.04.008
dc.identifier.uri https://hdl.handle.net/20.500.13091/705
dc.language.iso en en_US
dc.publisher ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER en_US
dc.relation.ispartof JOURNAL OF CULTURAL HERITAGE en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Weathering en_US
dc.subject Weathering Recognition en_US
dc.subject Deep Learning en_US
dc.subject Artificial Neural Network en_US
dc.subject Stone Cultural Heritage en_US
dc.subject Central Anatolia en_US
dc.subject Cultural-Heritage en_US
dc.subject Damage Detection en_US
dc.subject Higher-Plants en_US
dc.subject Buildings en_US
dc.subject Konya en_US
dc.subject Deterioration en_US
dc.subject Conservation en_US
dc.subject State en_US
dc.subject Quantification en_US
dc.title Deep Learning-Based Weathering Type Recognition in Historical Stone Monuments en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57202445804
gdc.author.scopusid 57200139642
gdc.author.scopusid 16555121900
gdc.author.wosid ince, ismail/AAA-3236-2021
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Jeoloji Mühendisliği Bölümü en_US
gdc.description.endpage 203 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 193 en_US
gdc.description.volume 45 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3024043010
gdc.identifier.wos WOS:000584607800004
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 32.0
gdc.oaire.influence 6.557186E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 5.8229247E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0104 chemical sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 5.60394142
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 54
gdc.plumx.crossrefcites 70
gdc.plumx.mendeley 105
gdc.plumx.scopuscites 78
gdc.scopus.citedcount 75
gdc.virtual.author İnce, İsmail
gdc.virtual.author Barstuğan, Mücahid
gdc.wos.citedcount 58
relation.isAuthorOfPublication aaab0c06-ea61-47ae-a2ea-5444b260751d
relation.isAuthorOfPublication 6aa50dd9-047a-4915-a080-f31da54482c6
relation.isAuthorOfPublication.latestForDiscovery aaab0c06-ea61-47ae-a2ea-5444b260751d

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1296207420300947-main.pdf
Size:
4.76 MB
Format:
Adobe Portable Document Format