The Deep Learning Method Applied To the Detection and Mapping of Stone Deterioration in Open-Air Sanctuaries of the Hittite Period in Anatolia

dc.contributor.author Hatır, Mehmet Ergün
dc.contributor.author Korkanç, Mustafa
dc.contributor.author Schachner, Andreas
dc.contributor.author İnce, İsmail
dc.date.accessioned 2021-12-13T10:29:50Z
dc.date.available 2021-12-13T10:29:50Z
dc.date.issued 2021
dc.description.abstract The detection of deterioration in archeological heritage sites is a very time-consuming task that requires expertise. Furthermore, vision-based approaches can cause errors, considering the complex types of de-terioration that develop in different scales and forms in monuments. This problem can be solved effec-tively owing to computer vision algorithms, commonly used in different areas nowadays. This study aims to develop a model that automatically detects and maps deteriorations (biological colonization, contour scaling, crack, higher plant, impact damage, microkarst, missing part) and restoration interventions using the Mask R-CNN algorithm, which has recently come to the fore with its feature of recognizing small and large-sized objects. To this end, a total of 2460 images of Yazilikaya monuments in the Hattusa archeo-logical site, which is on the UNESCO heritage list, were gathered. In the training phase of the proposed method, it was trained in model 1 to distinguish deposit deterioration commonly observed on the surface of monuments from other anomalies. Other anomalies trained were model 2. In this phase of the models, the average precision values with high accuracy rates ranging from 89.624% to 100% were obtained for the deterioration classes. The developed algorithms were tested on 4 different rock reliefs in Yazilikaya, which were not used in the training phase. In addition, an image of the Eflatunpinar water monument, which is on the UNESCO tentative list, was used to test the model's universality. According to the test results, it was determined that the models could be successfully applied to obtain maps of deterioration and restoration interventions in monuments in different regions. (c) 2021 Elsevier Masson SAS. All rights reserved. en_US
dc.identifier.doi 10.1016/j.culher.2021.07.004
dc.identifier.issn 1296-2074
dc.identifier.issn 1778-3674
dc.identifier.scopus 2-s2.0-85111321583
dc.identifier.uri https://doi.org/10.1016/j.culher.2021.07.004
dc.identifier.uri https://hdl.handle.net/20.500.13091/703
dc.language.iso en en_US
dc.publisher ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER en_US
dc.relation.ispartof JOURNAL OF CULTURAL HERITAGE en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hittite en_US
dc.subject Hattusa en_US
dc.subject Stone Deterioration en_US
dc.subject Deterioration Map en_US
dc.subject Mask R-Cnn en_US
dc.subject Archaeological Features en_US
dc.subject Buildings en_US
dc.subject Damage en_US
dc.title The Deep Learning Method Applied To the Detection and Mapping of Stone Deterioration in Open-Air Sanctuaries of the Hittite Period in Anatolia en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57202445804
gdc.author.scopusid 6507922031
gdc.author.scopusid 26033756000
gdc.author.scopusid 16555121900
gdc.author.wosid ince, ismail/AAA-3236-2021
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Jeoloji Mühendisliği Bölümü en_US
gdc.description.endpage 49 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 37 en_US
gdc.description.volume 51 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3188751775
gdc.identifier.wos WOS:000709736800005
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 29.0
gdc.oaire.influence 4.180327E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Hattusa
gdc.oaire.keywords Stone deterioration
gdc.oaire.keywords Deterioration map
gdc.oaire.keywords Hittite
gdc.oaire.keywords Mask R-CNN
gdc.oaire.popularity 2.7735746E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 18.84712572
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 28
gdc.plumx.crossrefcites 32
gdc.plumx.mendeley 51
gdc.plumx.scopuscites 38
gdc.scopus.citedcount 35
gdc.virtual.author İnce, İsmail
gdc.wos.citedcount 29
relation.isAuthorOfPublication aaab0c06-ea61-47ae-a2ea-5444b260751d
relation.isAuthorOfPublication.latestForDiscovery aaab0c06-ea61-47ae-a2ea-5444b260751d

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1296207421001096-main.pdf
Size:
7.87 MB
Format:
Adobe Portable Document Format