Properties and Corrosion Behavior of Chromium and Vanadium Carbide Composite Coatings Produced on Ductile Cast Iron by Thermoreactive Diffusion Technique

dc.contributor.author Günen, Ali
dc.contributor.author Kalkandelen, Müge
dc.contributor.author Karahan, İsmail Hakkı
dc.contributor.author Kurt, Bülent
dc.contributor.author Kanca, Erdoğan
dc.contributor.author Gök, Mustafa Sabri
dc.contributor.author Karakaş, Mustafa Serdar
dc.date.accessioned 2021-12-13T10:29:46Z
dc.date.available 2021-12-13T10:29:46Z
dc.date.issued 2020
dc.description.abstract Ductile iron (DI) owes many of its attractive mechanical properties to the graphite nodules in its structure. However, since galvanic coupling can occur between the graphite nodules and the matrix in aggressive environments, these nodules can, at the same time, reduce its corrosion resistance. In this study, composite carbide coatings were grown on the surface of GGG-80 using the thermoreactive diffusion (TRD) process. The process was carried out at 900, 1000, and 1100 degrees C for 1 h using nanosized Fe-V and Fe-Cr powders. The coatings were characterized by X-ray diffractometry (XRD), two-dimensional profilometry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and microhardness tests. The corrosion behavior of the coatings were evaluated in three different solutions (3.5 wt% NaCl, 5 wt% H2SO4, and 5 wt% HNO3) using electrochemical open-circuit potential (OCP) and potentiodynamic polarization measurements. Microstructures and hardness tests showed that the nodular graphite in the surface was dissolved at the TRD process temperatures and that a coating of 12-36 mu m thickness and 2461-3200 HV0.05 hardness was obtained. The corrosion resistance of the composite coating was up to 10, 33.5, and 75 times higher than the uncoated GGG-80 in NaCl, H2SO4, and HNO3, respectively. The improvement in corrosion resistance was a direct result of the formation of complex carbides and the elimination of graphite nodules in the surface of the alloy. en_US
dc.description.sponsorship TUBITAK Research Council [118M760] en_US
dc.description.sponsorship This study was supported by the TUBITAK Research Council (Project No.: 118M760). The authors wish to thank OZEN S Makina Company Pvt. Limited (Mersin/Turkey) and Murat OZOZAN for their substrate materials. en_US
dc.identifier.doi 10.1115/1.4047743
dc.identifier.issn 0094-4289
dc.identifier.issn 1528-8889
dc.identifier.scopus 2-s2.0-85092652947
dc.identifier.uri https://doi.org/10.1115/1.4047743
dc.identifier.uri https://hdl.handle.net/20.500.13091/656
dc.language.iso en en_US
dc.publisher ASME en_US
dc.relation.ispartof JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Ductile Iron en_US
dc.subject Thermoreactive Diffusion en_US
dc.subject Composite Coating en_US
dc.subject Corrosion en_US
dc.subject Materials Processing en_US
dc.subject Mechanical Behavior en_US
dc.subject Resistance en_US
dc.subject Surface en_US
dc.subject Temperature en_US
dc.subject Layer en_US
dc.subject Steel en_US
dc.subject Microstructure en_US
dc.subject Performance en_US
dc.title Properties and Corrosion Behavior of Chromium and Vanadium Carbide Composite Coatings Produced on Ductile Cast Iron by Thermoreactive Diffusion Technique en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 55762100600
gdc.author.scopusid 57215010534
gdc.author.scopusid 6602960310
gdc.author.scopusid 36927313300
gdc.author.scopusid 13613326500
gdc.author.scopusid 32367668800
gdc.author.scopusid 14056210800
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.volume 142 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W3041241401
gdc.identifier.wos WOS:000566865700008
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 16.0
gdc.oaire.influence 3.5242214E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Layer
gdc.oaire.keywords Performance
gdc.oaire.keywords Materials Science
gdc.oaire.keywords Resistance
gdc.oaire.keywords Composite Coating
gdc.oaire.keywords Ductile iron
gdc.oaire.keywords Materials Processing
gdc.oaire.keywords Engineering
gdc.oaire.keywords Mechanical behavior
gdc.oaire.keywords Thermoreactive Diffusion
gdc.oaire.keywords Microstructure
gdc.oaire.keywords Mechanical Behavior
gdc.oaire.keywords Multidisciplinary
gdc.oaire.keywords Mechanical Engineering
gdc.oaire.keywords Temperature
gdc.oaire.keywords Mechanical
gdc.oaire.keywords Composite coating
gdc.oaire.keywords Surface
gdc.oaire.keywords Corrosion
gdc.oaire.keywords Steel
gdc.oaire.keywords Thermoreactive diffusion
gdc.oaire.keywords Materials processing
gdc.oaire.keywords Ductile Iron
gdc.oaire.popularity 1.9471093E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0210 nano-technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.89567898
gdc.openalex.normalizedpercentile 0.85
gdc.opencitations.count 21
gdc.plumx.mendeley 18
gdc.plumx.scopuscites 31
gdc.scopus.citedcount 31
gdc.virtual.author Karakaş, Mustafa Serdar
gdc.wos.citedcount 28
relation.isAuthorOfPublication a486de97-29bf-459c-b233-16aeb57c9c76
relation.isAuthorOfPublication.latestForDiscovery a486de97-29bf-459c-b233-16aeb57c9c76

Files