Dynamical Behavior of Rational Difference Equation X(n+1) = X(n-15)/+ 1 +/- X(n-3)x(n
| dc.contributor.author | Oğul, Burak | |
| dc.contributor.author | Şimşek, Dağıstan | |
| dc.contributor.author | Kurbanlı, Abdullah Selçuk | |
| dc.contributor.author | Öğünmez, Hasan | |
| dc.date.accessioned | 2021-12-13T10:34:36Z | |
| dc.date.available | 2021-12-13T10:34:36Z | |
| dc.date.issued | 2024 | |
| dc.description | Article; Early Access | en_US |
| dc.description.abstract | In this paper, we study the qualitative behavior of the rational recursive sequences x(n+1) = x(n-15)/+/- 1 +/- x(n-3)x(n-7)x(n-11)x(n-15), n is an element of N-0 where the initial conditions are arbitrary real numbers. Also, we give the numerical examples and solutions graphs of some cases of difference equations. | en_US |
| dc.identifier.doi | 10.1007/s12591-021-00582-8 | |
| dc.identifier.issn | 0971-3514 | |
| dc.identifier.issn | 0974-6870 | |
| dc.identifier.scopus | 2-s2.0-85116422832 | |
| dc.identifier.uri | https://doi.org/10.1007/s12591-021-00582-8 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/1040 | |
| dc.language.iso | en | en_US |
| dc.publisher | SPRINGER INDIA | en_US |
| dc.relation.ispartof | DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Recursive Sequences | en_US |
| dc.subject | Local Stability | en_US |
| dc.subject | Periodic Solution | en_US |
| dc.subject | Difference Equations | en_US |
| dc.subject | Positive Solutions | en_US |
| dc.subject | Xn+1 | en_US |
| dc.subject | Systems | en_US |
| dc.title | Dynamical Behavior of Rational Difference Equation X(n+1) = X(n-15)/+ 1 +/- X(n-3)x(n | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57195805841 | |
| gdc.author.scopusid | 33768187600 | |
| gdc.author.scopusid | 35094136800 | |
| gdc.author.scopusid | 40462290300 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 534 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 519 | |
| gdc.description.volume | 32 | |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W3201919180 | |
| gdc.identifier.wos | WOS:000705740800001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | local stability | |
| gdc.oaire.keywords | Multiplicative and other generalized difference equations | |
| gdc.oaire.keywords | Stability theory for difference equations | |
| gdc.oaire.keywords | periodic solution | |
| gdc.oaire.keywords | difference equations | |
| gdc.oaire.keywords | Periodic solutions of difference equations | |
| gdc.oaire.keywords | recursive sequences | |
| gdc.oaire.popularity | 1.5483943E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.19 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Kurbanlı, Abdullah Selçuk | |
| gdc.virtual.author | Şimşek, Dağıstan | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | e11b3078-f9af-46fb-b6f4-fb021706e5ca | |
| relation.isAuthorOfPublication | 04a48295-e7cc-4e18-a650-8ba27bc0842a | |
| relation.isAuthorOfPublication.latestForDiscovery | e11b3078-f9af-46fb-b6f4-fb021706e5ca |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- s12591-021-00582-8.pdf
- Size:
- 1.39 MB
- Format:
- Adobe Portable Document Format
