Health Status Detection of Neonates Using Infrared Thermography and Deep Convolutional Neural Networks

dc.contributor.author Örnek, Ahmet Haydar
dc.contributor.author Ceylan, Murat
dc.contributor.author Ervural, Saim
dc.date.accessioned 2021-12-13T10:34:39Z
dc.date.available 2021-12-13T10:34:39Z
dc.date.issued 2019
dc.description.abstract Protection of body temperature is critically important for health. Diseases and infections cause local temperature imbalances in the body. Infrared Thermography (IRT), which is a non-invasive and non-contact method, has been used in medical applications for decades. Pre-diagnosis and follow-up treatment systems can be realized by monitoring the temperature distribution in the body. In this study, IRT and deep Convolutional Neural Networks (CNNs) models were used together for the first time to detect the health status of neonates. Neonatal thermal images have been taken in the Neonatal Intensive Care Unit (NICU) of Selcuk University, Faculty of Medicine (Konya, Turkey), over a one-year period. Neonatal thermal images were obtained from selected 19 healthy and 19 unhealthy neonates. Data augmentation methods, such as brightness enhancement, color transformation, resolution and contrast changes, and the addition of different noises, were applied to the thermal images for the training of a CNN model. A number of 3800 thermal images taken from neonates in NICU were augmented to 15,200 and 30,400 thermal images. Then, using CNNs, 380, 3800, 15,200, and 30,400 neonatal thermal images were classified as healthy and unhealthy. The optimal result obtained was with 99.58% accuracy, 99.73% specificity, 99.43% sensitivity, and 0.996 AUC for the 30,400 thermal images employed, Using the proposed system, 15,159 of 15,200 thermograms belonging to healthy premature babies were classified as healthy, whereas 15,114 of 15,200 thermograms of premature babies, diagnosed with at least one disease, were determined as unhealthy. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [215E019] en_US
dc.description.sponsorship This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, project number: 215E019). The authors express their gratitude to Selcuk University's expert pediatricians H. Soylu and M. Konak, for their help and future vision. We also thank all the staff who helped during the process of taking thermal images of the neonates in the neonatal intensive care unit. en_US
dc.identifier.doi 10.1016/j.infrared.2019.103044
dc.identifier.issn 1350-4495
dc.identifier.issn 1879-0275
dc.identifier.scopus 2-s2.0-85073725506
dc.identifier.uri https://doi.org/10.1016/j.infrared.2019.103044
dc.identifier.uri https://hdl.handle.net/20.500.13091/1072
dc.language.iso en en_US
dc.publisher ELSEVIER en_US
dc.relation.ispartof INFRARED PHYSICS & TECHNOLOGY en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Thermal Imaging en_US
dc.subject Premature Baby en_US
dc.subject Deep Learning en_US
dc.subject Convolutional Neural Network en_US
dc.subject Classification en_US
dc.subject Classification en_US
dc.subject Temperature en_US
dc.subject System en_US
dc.title Health Status Detection of Neonates Using Infrared Thermography and Deep Convolutional Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57210593918
gdc.author.scopusid 56276648900
gdc.author.scopusid 57195215988
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 103044
gdc.description.volume 103 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2977954239
gdc.identifier.wos WOS:000502884500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 12.0
gdc.oaire.influence 3.739196E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Premature Baby
gdc.oaire.keywords Convolutional Neural Network
gdc.oaire.keywords Thermal Imaging
gdc.oaire.keywords Classification
gdc.oaire.popularity 2.0784373E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 3.66507177
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 25
gdc.plumx.crossrefcites 26
gdc.plumx.mendeley 50
gdc.plumx.scopuscites 29
gdc.scopus.citedcount 29
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 23
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s10854-021-07181-x.pdf
Size:
1.72 MB
Format:
Adobe Portable Document Format