A Review Investigation of the Usage Artificial Neural Networks on Air Pollution Modeling

dc.contributor.author Kunt, Fatma
dc.contributor.author Kopuklu, Buse Nur
dc.contributor.author Cansu Ayturan, Zeynep
dc.contributor.author Dursun, Şükrü
dc.date.accessioned 2023-11-02T13:09:57Z
dc.date.available 2023-11-02T13:09:57Z
dc.date.issued 2023
dc.description.abstract Air pollution is one of the most important problems that negatively impacts human health and disrupts the ecological balance by changing the atmosphere because of the pollutants formed as a result of natural events and human activities. This problem is growing because of the increase in population, the development of industrialization and urbanization. Pollutants that cause air pollution reaching the atmosphere directly without changing their form are sulfur dioxide (SO2), hydrogen sulfide (H2S), nitrogen monoxide (NO), nitrogen dioxide (NO2), and carbon monoxide (CO), carbon dioxide (CO2) and particulate matter. Secondary pollutants are formed by reacting with other substances in the atmosphere after leaving the source are sulfur trioxide (SO3), sulfuric acid (H2SO4), ozone(O3), aldehydes, peroxyacetyl nitrate (PAN), and heavy metals. Besides, air pollution causes acid rain, increases acidity in lakes, destroys forests, damages agricultural and animal products, and significantly disrupts the ecological balance, especially in industrial countries Therefore, this issue should be evaluated in many ways such as modelling to predict future episode, monitoring to assess present air pollution levels efficiently and taking preventive precautions with respect to these evaluations. Artificial neural networks are one of the mostly used artificial intelligence prediction techniques for prediction of air pollutant future concentrations. It uses multilayer perceptron technique which consists of at least three layers of nodes: an input layer, a hidden layer, and an output layer for estimating recent atmospheric events and air quality. This study aims to examine the studies on the use of artificial neural network models to predict air pollution concentrations accurately and swiftly. It has been proven that the application of this method for air pollution prediction allows the improving of prediction accuracy. © 2023, Hysen MANKOLLI. All rights reserved. en_US
dc.identifier.doi 10.31407/ijees13.127
dc.identifier.issn 2224-4980 en_US
dc.identifier.scopus 2-s2.0-85208073437
dc.identifier.uri https://doi.org/10.31407/ijees13.127
dc.language.iso en en_US
dc.publisher Hysen MANKOLLI en_US
dc.relation.ispartof International Journal of Ecosystems and Ecology Science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Air Pollution en_US
dc.subject Artificial Intelligence en_US
dc.subject Artificial Neural Networks en_US
dc.subject Modeling en_US
dc.title A Review Investigation of the Usage Artificial Neural Networks on Air Pollution Modeling en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 34768491900
gdc.author.scopusid 59393580600
gdc.author.scopusid 59393436700
gdc.author.scopusid 7005761090
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.contributor.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE# en_US
gdc.contributor.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE# en_US
gdc.contributor.affiliation Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Çevre Mühendisliği Bölümü en_US
gdc.contributor.affiliation Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Çevre Mühendisliği Bölümü en_US
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Kunt F.] Environmental Engineering Department, Engineering Faculty, Necmettin Erbakan University, Konya, Turkey; [Kopuklu B.N.] Environmental Engineering Department, Engineering Faculty, Necmettin Erbakan University, Konya, Turkey; [Cansu Ayturan Z.] Environmental Engineering Department, Engineering and Natural Science Faculty, Konya Technical University, Konya, Turkey; [Dursun S.] Environmental Engineering Department, Engineering and Natural Science Faculty, Konya Technical University, Konya, Turkey en_US
gdc.description.endpage 218 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 215 en_US
gdc.description.volume 13 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4313598152
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.0536601E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Dursun, Şükrü
relation.isAuthorOfPublication 31116e0d-0d6c-4f48-85e0-5e7491489431
relation.isAuthorOfPublication.latestForDiscovery 31116e0d-0d6c-4f48-85e0-5e7491489431

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
FatmaKunt1BuseNurKopuklu1ZeynepCansuAyturan2SukruDursun2AREVIEWINVESTIGATIONOFTHEUSAGEARTIFICIALNEURALNETWORKSONAIRPOLLUTIONMODELINGpage215-218.pdf
Size:
51.06 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.2 KB
Format:
Item-specific license agreed upon to submission
Description: