Visual-Inertial Image-Odometry Network (viionet): a Gaussian Process Regression-Based Deep Architecture Proposal for Uav Pose Estimation

dc.contributor.author Aslan, Muhammet Fatih
dc.contributor.author Durdu, Akif
dc.contributor.author Sabancı, Kadir
dc.date.accessioned 2022-05-23T20:22:42Z
dc.date.available 2022-05-23T20:22:42Z
dc.date.issued 2022
dc.description.abstract This study estimates the pose of Unmanned Aerial Vehicle (UAV) through artificial intelligence-based approaches and combines visual-inertial information in a different way than previous studies. For an effective fusion, the inertial data between both frames is normalized after denoising with the Savitzky-Golay technique and finally converted from numerical value to image. To strengthen these inertial image features with the change of motion between two frames, frames of Optical Flow (OF) are obtained and OF frames are combined with inertial images. Simultaneously, a parallel thread combines this OF frame with two consecutive raw frames. After features are extracted from inertial and camera data via Inception-v3, these features are fused and actual UAV poses are estimated via Gaussian Process Regression (GPR). Thanks to the smoothing process applied to these estimated values, a more stable pose estimation is provided. This proposed method is applied to the EuRoC dataset and our dataset produced in the Gazebo environment. The pose estimation results reveal that the proposed method has high performance compared to many previous studies. en_US
dc.identifier.doi 10.1016/j.measurement.2022.111030
dc.identifier.issn 0263-2241
dc.identifier.issn 1873-412X
dc.identifier.scopus 2-s2.0-85126838051
dc.identifier.uri https://doi.org/10.1016/j.measurement.2022.111030
dc.identifier.uri https://hdl.handle.net/20.500.13091/2422
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.ispartof Measurement en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep learning en_US
dc.subject Denoising en_US
dc.subject EuRoC en_US
dc.subject Gaussian process regression en_US
dc.subject Inertial image en_US
dc.subject Visual inertial odometry en_US
dc.subject UAV en_US
dc.subject Robust en_US
dc.subject Localization en_US
dc.subject Navigation en_US
dc.subject Slam en_US
dc.subject Versatile en_US
dc.subject Noise en_US
dc.subject Imu en_US
dc.title Visual-Inertial Image-Odometry Network (viionet): a Gaussian Process Regression-Based Deep Architecture Proposal for Uav Pose Estimation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 111030
gdc.description.volume 194 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4220786440
gdc.identifier.wos WOS:000793297600006
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 35.0
gdc.oaire.influence 4.802642E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9359008E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 12.1745074
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 27
gdc.plumx.crossrefcites 35
gdc.plumx.mendeley 29
gdc.plumx.patentfamcites 1
gdc.plumx.scopuscites 40
gdc.scopus.citedcount 40
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 35
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0263224122002974-main.pdf
Size:
5.34 MB
Format:
Adobe Portable Document Format