Cnn Based Sensor Fusion Method for Real-Time Autonomous Robotics Systems

dc.contributor.author Yıldız, Berat
dc.contributor.author Durdu, Akif
dc.contributor.author Kayabaşı, Ahmet
dc.contributor.author Duramaz, Mehmet
dc.date.accessioned 2022-05-23T20:23:43Z
dc.date.available 2022-05-23T20:23:43Z
dc.date.issued 2022
dc.description.abstract Autonomous robotic systems (ARS) serve in many areas of daily life. The sensors have critical importance for these systems. The sensor data obtained from the environment should be as accurate and reliable as possible and correctly interpreted by the autonomous robot. Since sensors have advantages and disadvantages over each other they should be used together to reduce errors. In this study, Convolutional Neural Network (CNN) based sensor fusion was applied to ARS to contribute the autonomous driving. In a real-time application, a camera and LIDAR sensor were tested with these networks. The novelty of this work is that the uniquely collected data set was trained in a new CNN network and sensor fusion was performed between CNN layers. The results showed that CNN based sensor fusion process was more effective than the individual usage of the sensors on the ARS. en_US
dc.identifier.doi 10.3906/elk-2008-147
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.scopus 2-s2.0-85125919177
dc.identifier.uri https://doi.org/10.3906/elk-2008-147
dc.identifier.uri https://hdl.handle.net/20.500.13091/2498
dc.language.iso en en_US
dc.publisher Tubitak Scientific & Technical Research Council Turkey en_US
dc.relation.ispartof Turkish Journal Of Electrical Engineering And Computer Sciences en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Autonomous robotic systems en_US
dc.subject deep learning en_US
dc.subject convolutional neural networks en_US
dc.subject sensor fusion en_US
dc.subject Multiple en_US
dc.subject Algorithm en_US
dc.subject Camera en_US
dc.title Cnn Based Sensor Fusion Method for Real-Time Autonomous Robotics Systems en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Durdu, Akif/0000-0002-5611-2322
gdc.author.wosid Durdu, Akif/AAQ-4344-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Meslek Yüksekokulları, Teknik Bilimler Meslek Yüksekokulu, Elektronik ve Otomasyon Bölümü en_US
gdc.description.endpage 93 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 79 en_US
gdc.description.volume 30 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4213415893
gdc.identifier.trdizinid 527551
gdc.identifier.wos WOS:000745996200003
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.6770859E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Sensor Fusion
gdc.oaire.keywords Convolutional Neural Networks
gdc.oaire.keywords Autonomous Robotic Systems
gdc.oaire.popularity 4.090688E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.28220715
gdc.openalex.normalizedpercentile 0.66
gdc.opencitations.count 1
gdc.plumx.mendeley 15
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 3
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
elk-30-1-6-2008-147.pdf
Size:
4.62 MB
Format:
Adobe Portable Document Format