Deep Learning-Based Probabilistic Autoencoder for Residential Energy Disaggregation: an Adversarial Approach

dc.contributor.author Çimen, Halil
dc.contributor.author Wu, Ying
dc.contributor.author Wu, Yanpeng
dc.contributor.author Terriche, Yacine
dc.contributor.author Vasquez, Juan C.
dc.contributor.author Guerrero, Josep M.
dc.date.accessioned 2022-11-28T16:54:42Z
dc.date.available 2022-11-28T16:54:42Z
dc.date.issued 2022
dc.description.abstract Energy disaggregation is the process of disaggregating a household's total energy consumption into its appliance-level components. One of the limitations of energy disaggregation is its generalization capacity, which can be defined as the ability of the model to analyze new households. In this article, a new energy disaggregation approach based on adversarial autoencoder (AAE) is proposed to create a generative model and enhance the generalization capacity. The proposed method has a probabilistic structure to handle uncertainties in the unseen data. By transforming the latent space from a deterministic structure to a Gaussian prior distribution, AAEs decoder transforms into a generative model. The proposed approach is validated through experimental tests using two different datasets. The experimental results exhibit a 55% MAE performance increase compared to deterministic models and 7% compared to probabilistic models. In addition, considering the predictions made when the appliances are on, the AAE improves the performance by 16% for UKDALE and 36% for REDD dataset compared to the state-of-art models. Moreover, the online analysis performance of AAE is examined in detail, and the disadvantages of instant predictions and the possible solutions are extensively discussed. en_US
dc.description.sponsorship VILLUM FONDEN [25920]; Center for Research on Microgrids; AAU Talent Project-The Energy Internet-Integrating Internet of Things into the Smart Grid [771116] en_US
dc.description.sponsorship This work was supported in part by the VILLUM FONDEN under the VILLUM Investigator under Grant 25920, in part by the Center for Research on Microgrids, and in part by the AAU Talent Project-The Energy Internet-Integrating Internet of Things into the Smart Grid under Grant 771116. Paper no. TII-21-2563. en_US
dc.identifier.doi 10.1109/TII.2022.3150334
dc.identifier.issn 1551-3203
dc.identifier.issn 1941-0050
dc.identifier.scopus 2-s2.0-85124765333
dc.identifier.uri https://doi.org/10.1109/TII.2022.3150334
dc.identifier.uri https://doi.org/10.1109/TII.2022.3150334
dc.identifier.uri https://hdl.handle.net/20.500.13091/3155
dc.language.iso en en_US
dc.publisher Ieee-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof IEEE Transactions On Industrial Informatics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hidden Markov models en_US
dc.subject Training en_US
dc.subject Probabilistic logic en_US
dc.subject Analytical models en_US
dc.subject Generative adversarial networks en_US
dc.subject Deep learning en_US
dc.subject Data models en_US
dc.subject Adversarial autoencoder (AAE) en_US
dc.subject deep learning en_US
dc.subject energy disaggregation en_US
dc.subject generative adversarial networks en_US
dc.subject nonintrusive load monitoring (NILM) en_US
dc.subject online energy disaggregation en_US
dc.subject probabilistic energy disaggregation en_US
dc.subject residential energy disaggregation en_US
dc.subject Load Disaggregation en_US
dc.title Deep Learning-Based Probabilistic Autoencoder for Residential Energy Disaggregation: an Adversarial Approach en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Wu, Ying/0000-0001-5602-3015
gdc.author.id Vasquez, Juan C./0000-0001-6332-385X
gdc.author.id CIMEN, HALIL/0000-0003-0104-3005
gdc.author.institutional Çimen, Halil
gdc.author.scopusid 57205614115
gdc.author.scopusid 55556950900
gdc.author.scopusid 56067425600
gdc.author.scopusid 56470769200
gdc.author.scopusid 57203104097
gdc.author.scopusid 57226523614
gdc.author.wosid Vasquez, Juan C./J-2247-2014
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 8408 en_US
gdc.description.issue 12 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 8399 en_US
gdc.description.volume 18 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4210962596
gdc.identifier.wos WOS:000862429800007
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 14.0
gdc.oaire.influence 3.1985665E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Generative adversarial networks
gdc.oaire.keywords Adversarial autoencoder
gdc.oaire.keywords Energy disaggregation
gdc.oaire.keywords Probabilistic energy disaggregation
gdc.oaire.keywords Nonintrusive load monitoring (NILM)
gdc.oaire.keywords Deep learning
gdc.oaire.keywords Residential energy disaggregation
gdc.oaire.keywords Online energy disaggregation
gdc.oaire.popularity 1.2980138E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 3.01410817
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 22
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 25
gdc.plumx.scopuscites 33
gdc.scopus.citedcount 32
gdc.virtual.author Çimen, Halil
gdc.wos.citedcount 21
relation.isAuthorOfPublication d6f62538-2dd4-40ea-b407-99a0c3c045d1
relation.isAuthorOfPublication.latestForDiscovery d6f62538-2dd4-40ea-b407-99a0c3c045d1

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Deep_Learning-Based_Probabilistic_Autoencoder_for_Residential_Energy_Disaggregation_An_Adversarial_Approach.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format