A Novel Convolutional-Recurrent Hybrid Network for Sunn Pest-Damaged Wheat Grain Detection

dc.contributor.author Sabancı, Kadir
dc.contributor.author Aslan, Muhammet Fatih
dc.contributor.author Ropelewska, Ewa
dc.contributor.author Ünlerşen, Muhammed Fahri
dc.contributor.author Durdu, Akif
dc.date.accessioned 2022-05-23T20:22:43Z
dc.date.available 2022-05-23T20:22:43Z
dc.date.issued 2022
dc.description.abstract The sunn pest-damaged (SPD) wheat grains negatively affect the flour quality and cause yield loss. This study focuses on the detection of SPD wheat grains using deep learning. With the created image acquisition mechanism, healthy and SPD wheat grains are displayed. Image preprocessing steps are applied to the captured raw images, then data augmentation is performed. The augmented image data is given as an input to two different deep learning architectures. In the first architecture, transfer learning application is made using AlexNet. The second architecture is a hybrid structure, obtained by adding the bidirectional long short-term memory (BiLSTM) layer to the first architecture. In terms of accuracy, the performance of the non-hybrid and hybrid architectures that are presented in the study is determined as 98.50% and 99.50%, respectively. High classification success and innovative deep learning structure are the features of this study that distinguish it from previous studies. en_US
dc.identifier.doi 10.1007/s12161-022-02251-0
dc.identifier.issn 1936-9751
dc.identifier.issn 1936-976X
dc.identifier.scopus 2-s2.0-85125643313
dc.identifier.uri https://doi.org/10.1007/s12161-022-02251-0
dc.identifier.uri https://hdl.handle.net/20.500.13091/2431
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Food Analytical Methods en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject AlexNet en_US
dc.subject LSTM en_US
dc.subject BiLSTM en_US
dc.subject Sunn pest damaged wheat en_US
dc.subject Transfer learning en_US
dc.subject Wheat classification en_US
dc.subject Durum-Wheat en_US
dc.subject Classification en_US
dc.subject Proteinase en_US
dc.subject Hemiptera en_US
dc.subject Quality en_US
dc.title A Novel Convolutional-Recurrent Hybrid Network for Sunn Pest-Damaged Wheat Grain Detection en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Durdu, Akif/0000-0002-5611-2322
gdc.author.id Ropelewska, Ewa/0000-0001-8891-236X
gdc.author.wosid Durdu, Akif/AAQ-4344-2020
gdc.author.wosid Ropelewska, Ewa/R-2482-2018
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 1760 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1748 en_US
gdc.description.volume 15 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4220920464
gdc.identifier.wos WOS:000764449400001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 39.0
gdc.oaire.influence 4.7331725E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.380584E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0106 biological sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 7.64115784
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 30
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 15
gdc.plumx.scopuscites 42
gdc.scopus.citedcount 42
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 37
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s12161-022-02251-0.pdf
Size:
2.66 MB
Format:
Adobe Portable Document Format