Determining the Shear Strength of Frp-Rc Beams Using Soft Computing and Code Methods

dc.contributor.author Yavuz, Günnur
dc.date.accessioned 2021-12-13T10:41:28Z
dc.date.available 2021-12-13T10:41:28Z
dc.date.issued 2019
dc.description.abstract In recent years, multiple experimental studies have been performed on using fiber reinforced polymer (FRP) bars in reinforced concrete (RC) structural members. FRP bars provide a new type of reinforcement that avoids the corrosion of traditional steel reinforcement. In this study, predicting the shear strength of RC beams with FRP longitudinal bars using artificial neural networks (ANNs) is investigated as a different approach from the current specific codes. An ANN model was developed using the experimental data of 104 FRP-RC specimens from an existing database in the literature. Seven different input parameters affecting the shear strength of FRP bar reinforced RC beams were selected to create the ANN structure. The most convenient ANN algorithm was determined as traingdx. The results from current codes (ACI440.1R-15 and JSCE) and existing literature in predicting the shear strength of FRP-RC beams were investigated using the identical test data. The study shows that the ANN model produces acceptable predictions for the ultimate shear strength of FRP-RC beams (maximum R-2 approximate to 0.97). Additionally, the ANN model provides more accurate predictions for the shear capacity than the other computed methods in the ACI440.1R-15, JSCE codes and existing literature for considering different performance parameters. en_US
dc.identifier.doi 10.12989/cac.2019.23.1.049
dc.identifier.issn 1598-8198
dc.identifier.issn 1598-818X
dc.identifier.scopus 2-s2.0-85061162834
dc.identifier.uri https://doi.org/10.12989/cac.2019.23.1.049
dc.identifier.uri https://hdl.handle.net/20.500.13091/1523
dc.language.iso en en_US
dc.publisher TECHNO-PRESS en_US
dc.relation.ispartof COMPUTERS AND CONCRETE en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Internal Frp Bar en_US
dc.subject Reinforced Concrete en_US
dc.subject Beam en_US
dc.subject Shear Strength en_US
dc.subject Artificial Neural Network en_US
dc.subject Reinforced Concrete Beams en_US
dc.subject Prediction en_US
dc.subject Capacity en_US
dc.subject Polymer en_US
dc.title Determining the Shear Strength of Frp-Rc Beams Using Soft Computing and Code Methods en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 6603867460
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, İnşaat Mühendisliği Bölümü en_US
gdc.description.endpage 60 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 49 en_US
gdc.description.volume 23 en_US
gdc.description.wosquality Q1
gdc.identifier.wos WOS:000457493400005
gdc.index.type WoS
gdc.index.type Scopus
gdc.opencitations.count 1
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.virtual.author Yavuz, Günnur
gdc.wos.citedcount 12
relation.isAuthorOfPublication 92a28e71-c8ca-47a1-b5d3-9ccffe7693aa
relation.isAuthorOfPublication.latestForDiscovery 92a28e71-c8ca-47a1-b5d3-9ccffe7693aa

Files