Data-Driven Ship Berthing Forecasting for Cold Ironing in Maritime Transportation
| dc.contributor.author | Bakar, Nur Najihah Abu | |
| dc.contributor.author | Bazmohammadi, Najmeh | |
| dc.contributor.author | Çimen, Halil | |
| dc.contributor.author | Uyanık, Tayfun | |
| dc.contributor.author | Vasquez, Juan C. | |
| dc.contributor.author | Guerrero, Josep M. | |
| dc.date.accessioned | 2022-10-08T20:48:58Z | |
| dc.date.available | 2022-10-08T20:48:58Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Cold ironing (CI) is an electrification alternative in the maritime sector used to reduce shipborne emissions by switching from fuel to electricity when a ship docks at a port. During the ship's berthing mode of operation, accurately estimating the berthing duration could assist the port operator to manage the berth allocation and energy scheduling optimally. However, the involvement of multiple input parameters with a large dataset requires a suitable handling method. Thus, this paper proposed a data-driven approach for ship berthing forecasting of cold ironing with various models such as artificial neural networks, multiple linear regression, random forest, decision tree, and extreme gradient boosting. Meanwhile, RMSE and MAE are two main indicators applied to assess forecasting accuracy. The simulation-based result shows that the artificial neural network outperforms all other models with the lowest error performance of RMSE (3.1343) and MAE (0.2548), suggesting its capability to handle nonlinearities in complex forecasting problems of port activity. The high accuracy of forecasting output in this study, which is berthing duration contributes to close estimation of two info: 1) CI power consumption and 2) departure time of the ship. This information is vital to the port operator to be used in the energy management system (EMS) as well as in the berth allocation problem (BAP). © 2022 The Author(s) | en_US |
| dc.description.sponsorship | Villum Fonden; Ministry of Higher Education, Malaysia, MOHE; Universiti Malaysia Perlis | en_US |
| dc.description.sponsorship | This research work was supported by a Villum Investigator grant (no. 25920) from the Villum Fonden; University Malaysia Perlis (UniMAP); and the Ministry of Education Malaysia. | en_US |
| dc.identifier.doi | 10.1016/j.apenergy.2022.119947 | |
| dc.identifier.issn | 0306-2619 | |
| dc.identifier.scopus | 2-s2.0-85138179226 | |
| dc.identifier.uri | https://doi.org/10.1016/j.apenergy.2022.119947 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/2924 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Ltd | en_US |
| dc.relation.ispartof | Applied Energy | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Cold ironing | en_US |
| dc.subject | Data-driven | en_US |
| dc.subject | Electrification | en_US |
| dc.subject | Emission | en_US |
| dc.subject | Forecasting | en_US |
| dc.subject | Ship transportation | en_US |
| dc.title | Data-Driven Ship Berthing Forecasting for Cold Ironing in Maritime Transportation | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Çimen, Halil | |
| gdc.author.scopusid | 57200727038 | |
| gdc.author.scopusid | 55364701400 | |
| gdc.author.scopusid | 57205614115 | |
| gdc.author.scopusid | 57216842450 | |
| gdc.author.scopusid | 57203104097 | |
| gdc.author.scopusid | 35588010400 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 119947 | |
| gdc.description.volume | 326 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4296614179 | |
| gdc.identifier.wos | WOS:000862853200006 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 35.0 | |
| gdc.oaire.influence | 4.0476063E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Artificial neural network | |
| gdc.oaire.keywords | Artificial intelligence | |
| gdc.oaire.keywords | Environmental Engineering | |
| gdc.oaire.keywords | Ocean Engineering | |
| gdc.oaire.keywords | Port Efficiency | |
| gdc.oaire.keywords | Operations research | |
| gdc.oaire.keywords | Optimization of Container Terminal Operations and Logistics | |
| gdc.oaire.keywords | Industrial and Manufacturing Engineering | |
| gdc.oaire.keywords | Emission | |
| gdc.oaire.keywords | Maritime Transportation | |
| gdc.oaire.keywords | Shipping | |
| gdc.oaire.keywords | Engineering | |
| gdc.oaire.keywords | Decision tree | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Data mining | |
| gdc.oaire.keywords | Maritime Transportation Safety and Risk Analysis | |
| gdc.oaire.keywords | Electrification | |
| gdc.oaire.keywords | Statistics | |
| gdc.oaire.keywords | FOS: Environmental engineering | |
| gdc.oaire.keywords | data driven | |
| gdc.oaire.keywords | Port (circuit theory) | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Environmental Impact of Maritime Transportation Emissions | |
| gdc.oaire.keywords | Energy consumption | |
| gdc.oaire.keywords | Operations management | |
| gdc.oaire.keywords | cold ironing | |
| gdc.oaire.keywords | Electrical engineering | |
| gdc.oaire.keywords | Environmental Science | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Gradient boosting | |
| gdc.oaire.keywords | Mean squared error | |
| gdc.oaire.keywords | Ship Propulsion | |
| gdc.oaire.keywords | ship transportation | |
| gdc.oaire.keywords | Scheduling (production processes) | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Forecasting | |
| gdc.oaire.keywords | Random forest | |
| gdc.oaire.popularity | 2.8896268E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 4.52108096 | |
| gdc.openalex.normalizedpercentile | 0.95 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 24 | |
| gdc.plumx.crossrefcites | 33 | |
| gdc.plumx.mendeley | 79 | |
| gdc.plumx.scopuscites | 43 | |
| gdc.scopus.citedcount | 43 | |
| gdc.virtual.author | Çimen, Halil | |
| gdc.wos.citedcount | 37 | |
| relation.isAuthorOfPublication | d6f62538-2dd4-40ea-b407-99a0c3c045d1 | |
| relation.isAuthorOfPublication.latestForDiscovery | d6f62538-2dd4-40ea-b407-99a0c3c045d1 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 1-s2.0-S0306261922012041-main.pdf
- Size:
- 5.71 MB
- Format:
- Adobe Portable Document Format
