Data-Driven Ship Berthing Forecasting for Cold Ironing in Maritime Transportation

dc.contributor.author Bakar, Nur Najihah Abu
dc.contributor.author Bazmohammadi, Najmeh
dc.contributor.author Çimen, Halil
dc.contributor.author Uyanık, Tayfun
dc.contributor.author Vasquez, Juan C.
dc.contributor.author Guerrero, Josep M.
dc.date.accessioned 2022-10-08T20:48:58Z
dc.date.available 2022-10-08T20:48:58Z
dc.date.issued 2022
dc.description.abstract Cold ironing (CI) is an electrification alternative in the maritime sector used to reduce shipborne emissions by switching from fuel to electricity when a ship docks at a port. During the ship's berthing mode of operation, accurately estimating the berthing duration could assist the port operator to manage the berth allocation and energy scheduling optimally. However, the involvement of multiple input parameters with a large dataset requires a suitable handling method. Thus, this paper proposed a data-driven approach for ship berthing forecasting of cold ironing with various models such as artificial neural networks, multiple linear regression, random forest, decision tree, and extreme gradient boosting. Meanwhile, RMSE and MAE are two main indicators applied to assess forecasting accuracy. The simulation-based result shows that the artificial neural network outperforms all other models with the lowest error performance of RMSE (3.1343) and MAE (0.2548), suggesting its capability to handle nonlinearities in complex forecasting problems of port activity. The high accuracy of forecasting output in this study, which is berthing duration contributes to close estimation of two info: 1) CI power consumption and 2) departure time of the ship. This information is vital to the port operator to be used in the energy management system (EMS) as well as in the berth allocation problem (BAP). © 2022 The Author(s) en_US
dc.description.sponsorship Villum Fonden; Ministry of Higher Education, Malaysia, MOHE; Universiti Malaysia Perlis en_US
dc.description.sponsorship This research work was supported by a Villum Investigator grant (no. 25920) from the Villum Fonden; University Malaysia Perlis (UniMAP); and the Ministry of Education Malaysia. en_US
dc.identifier.doi 10.1016/j.apenergy.2022.119947
dc.identifier.issn 0306-2619
dc.identifier.scopus 2-s2.0-85138179226
dc.identifier.uri https://doi.org/10.1016/j.apenergy.2022.119947
dc.identifier.uri https://hdl.handle.net/20.500.13091/2924
dc.language.iso en en_US
dc.publisher Elsevier Ltd en_US
dc.relation.ispartof Applied Energy en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Cold ironing en_US
dc.subject Data-driven en_US
dc.subject Electrification en_US
dc.subject Emission en_US
dc.subject Forecasting en_US
dc.subject Ship transportation en_US
dc.title Data-Driven Ship Berthing Forecasting for Cold Ironing in Maritime Transportation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Çimen, Halil
gdc.author.scopusid 57200727038
gdc.author.scopusid 55364701400
gdc.author.scopusid 57205614115
gdc.author.scopusid 57216842450
gdc.author.scopusid 57203104097
gdc.author.scopusid 35588010400
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 119947
gdc.description.volume 326 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4296614179
gdc.identifier.wos WOS:000862853200006
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 35.0
gdc.oaire.influence 4.0476063E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Artificial neural network
gdc.oaire.keywords Artificial intelligence
gdc.oaire.keywords Environmental Engineering
gdc.oaire.keywords Ocean Engineering
gdc.oaire.keywords Port Efficiency
gdc.oaire.keywords Operations research
gdc.oaire.keywords Optimization of Container Terminal Operations and Logistics
gdc.oaire.keywords Industrial and Manufacturing Engineering
gdc.oaire.keywords Emission
gdc.oaire.keywords Maritime Transportation
gdc.oaire.keywords Shipping
gdc.oaire.keywords Engineering
gdc.oaire.keywords Decision tree
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Data mining
gdc.oaire.keywords Maritime Transportation Safety and Risk Analysis
gdc.oaire.keywords Electrification
gdc.oaire.keywords Statistics
gdc.oaire.keywords FOS: Environmental engineering
gdc.oaire.keywords data driven
gdc.oaire.keywords Port (circuit theory)
gdc.oaire.keywords Computer science
gdc.oaire.keywords Environmental Impact of Maritime Transportation Emissions
gdc.oaire.keywords Energy consumption
gdc.oaire.keywords Operations management
gdc.oaire.keywords cold ironing
gdc.oaire.keywords Electrical engineering
gdc.oaire.keywords Environmental Science
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Gradient boosting
gdc.oaire.keywords Mean squared error
gdc.oaire.keywords Ship Propulsion
gdc.oaire.keywords ship transportation
gdc.oaire.keywords Scheduling (production processes)
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Forecasting
gdc.oaire.keywords Random forest
gdc.oaire.popularity 2.8896268E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.collaboration International
gdc.openalex.fwci 4.52108096
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 24
gdc.plumx.crossrefcites 33
gdc.plumx.mendeley 79
gdc.plumx.scopuscites 43
gdc.scopus.citedcount 43
gdc.virtual.author Çimen, Halil
gdc.wos.citedcount 37
relation.isAuthorOfPublication d6f62538-2dd4-40ea-b407-99a0c3c045d1
relation.isAuthorOfPublication.latestForDiscovery d6f62538-2dd4-40ea-b407-99a0c3c045d1

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0306261922012041-main.pdf
Size:
5.71 MB
Format:
Adobe Portable Document Format