Estimation of Uav Flight Time and Battery Consumption for Photogrammetric Application Using Multiple Machine Learning Algorithms

dc.contributor.author Bilgehan, Makineci Hasan
dc.contributor.author Mustafa, Hüsrevoğlu
dc.contributor.author Hakan, Karabörk
dc.date.accessioned 2022-10-08T20:49:01Z
dc.date.available 2022-10-08T20:49:01Z
dc.date.issued 2022
dc.description.abstract In recent years, important research has been conducted in Machine Learning (ML), especially on Artificial Neural Networks (ANN). Adaptive-Network Based Fuzzy Inference Systems (ANFIS) and Particle Swarm Optimization-Fuzzy Inference System (PSO-FIS) algorithms are popular ML algorithms like ANN. In terms of their working architecture and results, ANN, ANFIS, and PSO-FIS algorithms can obtain useful solutions for different nonlinear problems. This study evaluated the performance of the ANN, ANFIS, and PSO-FIS algorithms and compared the estimation results. Regarding the application, the test and target data was obtained from the flights performed with Unmanned Aerial Vehicles (UAV), including how long the UAV operates (i.e., Flight Time, FT) and how much battery the UAV consumes during the flight (i.e., Battery Consumption, BC). To obtain FT and BC outputs, sixty-five pre- and post-flight data tables were created. The best iterations for estimating the outputs using the three ML algorithms (considering the minimum/maximum values, RMSE, R, and R2) were determined and discussed based on the training, validation, and test estimations. © 2022 IOP Publishing Ltd. en_US
dc.identifier.doi 10.1088/2631-8695/ac7a0b
dc.identifier.issn 2631-8695
dc.identifier.scopus 2-s2.0-85133728252
dc.identifier.uri https://doi.org/10.1088/2631-8695/ac7a0b
dc.identifier.uri https://hdl.handle.net/20.500.13091/2950
dc.language.iso en en_US
dc.publisher Institute of Physics en_US
dc.relation.ispartof Engineering Research Express en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject ANFIS en_US
dc.subject ANN en_US
dc.subject battery consume estimation en_US
dc.subject flight time estimation en_US
dc.subject performance evaluation en_US
dc.subject PSO-FIS en_US
dc.subject UAV en_US
dc.subject Antennas en_US
dc.subject Fuzzy neural networks en_US
dc.subject Learning algorithms en_US
dc.subject Machine learning en_US
dc.subject Particle swarm optimization (PSO) en_US
dc.subject Secondary batteries en_US
dc.subject Adaptive network-based fuzzy inference system en_US
dc.subject Adaptive-network- based fuzzy inference systems en_US
dc.subject Aerial vehicle en_US
dc.subject Battery consume estimation en_US
dc.subject Flight time en_US
dc.subject Flight time estimation en_US
dc.subject Fuzzy inference systems en_US
dc.subject Particle swarm en_US
dc.subject Particle swarm optimization-fuzzy inference system en_US
dc.subject Performances evaluation en_US
dc.subject Swarm optimization en_US
dc.subject Time estimation en_US
dc.subject Unmanned aerial vehicle en_US
dc.subject Fuzzy inference en_US
dc.title Estimation of Uav Flight Time and Battery Consumption for Photogrammetric Application Using Multiple Machine Learning Algorithms en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Bilgehan, Makineci Hasan
gdc.author.institutional Mustafa, Hüsrevoğlu
gdc.author.institutional Hakan, Karabörk
gdc.author.scopusid 57790145300
gdc.author.scopusid 57789086600
gdc.author.scopusid 57788867700
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Harita Mühendisliği Bölümü en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 025050
gdc.description.volume 4 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4283070385
gdc.identifier.wos WOS:000971688900001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 7.0
gdc.oaire.influence 3.165942E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 7.3085475E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.60196519
gdc.openalex.normalizedpercentile 0.62
gdc.opencitations.count 4
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 4
gdc.virtual.author Makineci, Hasan Bilgehan
gdc.virtual.author Hüsrevoğlu, Mustafa
gdc.virtual.author Karabörk, Hakan
gdc.wos.citedcount 2
relation.isAuthorOfPublication e9b325c4-ab4f-4305-bf8d-b7f4690879db
relation.isAuthorOfPublication e6e51760-ac40-43be-b62b-fd06d82c5998
relation.isAuthorOfPublication 09ba143f-9ebf-440c-b190-f92d202bf8a9
relation.isAuthorOfPublication.latestForDiscovery e9b325c4-ab4f-4305-bf8d-b7f4690879db

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Bilgehan_2022_Eng._Res._Express_4_025050.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format