An Adaptive and Hybrid State of Charge Estimation Method Integrating Sequence-To Learning and Coulomb Counting for Li-Ion Based Energy Storage Systems

dc.contributor.author Cımen, Halıl
dc.date.accessioned 2025-05-11T18:40:10Z
dc.date.available 2025-05-11T18:40:10Z
dc.date.issued 2025
dc.description.abstract For safe and long-lasting operation of Li-ion batteries used in electric vehicles and electric grid applications, the State of Charge (SOC) of the battery cell must be estimated with high accuracy. However, due to the uncertainty in environmental conditions and the complex nature of battery chemistry, SOC estimation still presents a significant challenge. In this study, an adaptive and hybrid method for SOC estimation of a Li-ion battery cell is proposed. Convolutional Neural Network (CNN) based Sequence-to-point learning architecture is used to estimate the initial SOC values at specific time intervals. In order to increase the estimation accuracy, a multi-scale CNN architecture is designed, and useful features are captured. The obtained estimation values are integrated with the partial coulomb counting method to increase the accuracy. In addition, the proposed model adaptively updates the estimation weights with the help of the estimation error data obtained during the full charging of the batteries. The proposed model is tested on the LG 18650HG2 dataset. The results prove that the proposed model is 23% more accurate than benchmark models at 25°C and 55.5% more accurate at 0°C. en_US
dc.identifier.doi 10.36306/konjes.1554945
dc.identifier.issn 2667-8055
dc.identifier.uri https://doi.org/10.36306/konjes.1554945
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/1302721/an-adaptive-and-hybrid-state-of-charge-estimation-method-integrating-sequence-to-point-learning-and-coulomb-counting-for-li-ion-based-energy-storage-systems
dc.language.iso en en_US
dc.publisher Konya Teknik Univ en_US
dc.relation.ispartof Konya Mühendislik Bilimleri Dergisi (Online) en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Coulomb Counting en_US
dc.subject Deep Learning en_US
dc.subject Li-Ion Batteries en_US
dc.subject Sequence-To- Point Learning en_US
dc.subject State Of Charge en_US
dc.title An Adaptive and Hybrid State of Charge Estimation Method Integrating Sequence-To Learning and Coulomb Counting for Li-Ion Based Energy Storage Systems en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Cımen, Halıl
gdc.author.wosid Cimen, Halil/Mfh-0713-2025
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp Konya Teknik Üniversitesi en_US
gdc.description.endpage 109 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 98 en_US
gdc.description.volume 13 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q4
gdc.identifier.openalex W4408071071
gdc.identifier.trdizinid 1302721
gdc.identifier.wos WOS:001470432500007
gdc.index.type WoS
gdc.index.type TR-Dizin
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Convolutional Neural Networks;Coulomb Counting;Deep Learning;Li-Ion Batteries;Sequence-to-Point Learning;State of Charge
gdc.oaire.keywords Elektrik Enerjisi Depolama
gdc.oaire.keywords Electrical Energy Storage
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.06
gdc.opencitations.count 0
gdc.wos.citedcount 0

Files