A Novel Hybrid Iot Based Ids Using Binary Grey Wolf Optimizer (bgwo) and Naive Bayes (nb)

dc.contributor.author Nur, İsmail Mohamed
dc.contributor.author Ülker, Erkan
dc.date.accessioned 2023-05-30T21:11:48Z
dc.date.available 2023-05-30T21:11:48Z
dc.date.issued 2020
dc.description.abstract One of the main objectives of intelligent environments is to enhance the quality of human life standard in terms of efficiency and comfort. The Internet of Things (IoT) model has newly evolved into the technology for establishing smart environments. IoT refers to physical things or devices which are able to exchange information with other devices. It is used in various fields such as smart home, smart city, industrial control, automobile industry, agriculture, intelligent transportation, home automation and appliances, healthcare, and many other fields. Moreover, it assures innovative business paradigms and advanced user experience. Privacy and security are counted as the key problems in any real-world intelligent environment for the IoT paradigm. Therefore, to implement the security of the IoT systems is becoming the first priority and big area of interest in the successful distribution of IoT networks. The open holes of security in IoT related systems create security risks that impact the smart applications. Mirai botnet is an example of one of the novel attacks that launched recently. The network of IoT is protected with authentication and encryption, but it can’t be mitigated against malicious and harmful attacks. Thus, IoT based Intrusion Detection System (IDS) is required to detect the attacks. In this paper, a novel hybrid IoT based IDS using Binary Grey wolf optimizer (BGWO) and Naive Bayes (NB) is presented to defend and secure intrusions on the IoT network. BGWO is used as feature selection and NB as a classification method. The results are compared with other optimization algorithms. The BoT-IoT data set is used as an experimental data set. en_US
dc.identifier.doi 10.31590/ejosat.804113
dc.identifier.issn 2148-2683
dc.identifier.uri https://doi.org/10.31590/ejosat.804113
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/1135919
dc.identifier.uri https://hdl.handle.net/20.500.13091/4096
dc.language.iso en en_US
dc.relation.ispartof Avrupa Bilim ve Teknoloji Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Internet of Things (IoT) en_US
dc.subject Intelligent environments en_US
dc.subject Intrusion Detection System en_US
dc.subject Mirai botnet en_US
dc.subject Security en_US
dc.subject Nesnelerin İnterneti (IoT) en_US
dc.subject Akıllı ortamlar en_US
dc.subject Saldırı Tespit Sistemi en_US
dc.subject Mirai botnet en_US
dc.subject Güvenlik en_US
dc.title A Novel Hybrid Iot Based Ids Using Binary Grey Wolf Optimizer (bgwo) and Naive Bayes (nb) en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp Konya Teknik Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Konya, Türkiye en_US
gdc.description.endpage 286 en_US
gdc.description.issue Ejosat Özel Sayı 2020 (ICCEES) en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 279 en_US
gdc.description.volume 0 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3092527343
gdc.identifier.trdizinid 1135919
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Engineering
gdc.oaire.keywords Mühendislik
gdc.oaire.keywords Internet of Things(IoT);Intelligent Environments;Intrusion Detection System;Mirai botnet;Security
gdc.oaire.keywords Nesnelerin İnterneti (IoT);Akıllı Ortamlar;Saldırı Tespit Sistemi;Mirai Botnet;Güvenlik
gdc.oaire.popularity 1.3503004E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.16953244
gdc.openalex.normalizedpercentile 0.54
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.virtual.author Ülker, Erkan
relation.isAuthorOfPublication ecd5c807-37b2-4c20-a42b-133bc166cbc0
relation.isAuthorOfPublication.latestForDiscovery ecd5c807-37b2-4c20-a42b-133bc166cbc0

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.31590-ejosat.804113-1323499.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format