Developing a Deep Neural Network Model for Predicting Carrots Volume

dc.contributor.author Örnek, Mustafa Nevzat
dc.contributor.author Örnek, Humar Kahramanlı
dc.date.accessioned 2021-12-13T10:34:39Z
dc.date.available 2021-12-13T10:34:39Z
dc.date.issued 2021
dc.description.abstract In this paper, a deep learning approach to predict carrots volume according to the physical properties was designed. A total of 464 carrots were used for volume prediction. The used carrots were taken from Kasinhani, Konya. First, the data was produced. For this, the length, the diameters with 5 cm intervals, and the volume of each carrot were measured and recorded. The measurements were done using a steel ruler, a vernier caliper, and a glass graduated cylinder. Two deep learning methods: DFN and LSTM were developed to predict carrot volume. The developed systems were implemented with the Keras library for Python. Statistical measures such as Root Mean Squared Error, Mean Absolute Error, and R-2 were used to determine the predicting accuracy of the system. Both methods produced very close values. DFN and LSTM networks achieved 0.9765 and 0.9766 R-2, respectively. RMSE values were 0.0312 for both models. The results obtained showed that both DFN and LSTM are successful and applicable to this task. en_US
dc.identifier.doi 10.1007/s11694-021-00923-9
dc.identifier.issn 2193-4126
dc.identifier.issn 2193-4134
dc.identifier.scopus 2-s2.0-85105191193
dc.identifier.uri https://doi.org/10.1007/s11694-021-00923-9
dc.identifier.uri https://hdl.handle.net/20.500.13091/1075
dc.language.iso en en_US
dc.publisher SPRINGER en_US
dc.relation.ispartof JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Carrots physical properties en_US
dc.subject Deep neural network en_US
dc.subject Deep feedforward networks en_US
dc.subject Stochastic gradient descent en_US
dc.subject Recurrent neural networks en_US
dc.subject Long short-term memory en_US
dc.title Developing a Deep Neural Network Model for Predicting Carrots Volume en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id ORNEK, Mustafa Nevzat/0000-0002-7478-3728
gdc.author.scopusid 56031369800
gdc.author.scopusid 23097443100
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Meslek Yüksekokulları, Teknik Bilimler Meslek Yüksekokulu, Makine ve Metal Teknolojileri Bölümü en_US
gdc.description.endpage 3479 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 3471 en_US
gdc.description.volume 15 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3159731010
gdc.identifier.wos WOS:000642837400006
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 13.0
gdc.oaire.influence 3.0846152E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.258897E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0404 agricultural biotechnology
gdc.oaire.sciencefields 04 agricultural and veterinary sciences
gdc.oaire.sciencefields 0405 other agricultural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 3.38345638
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 12
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 16
gdc.scopus.citedcount 15
gdc.virtual.author Örnek, Mustafa Nevzat
gdc.wos.citedcount 15
relation.isAuthorOfPublication 95886cf4-de54-4cad-8d2d-ffffe2b05074
relation.isAuthorOfPublication.latestForDiscovery 95886cf4-de54-4cad-8d2d-ffffe2b05074

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Örnek-KahramanlıÖrnek2021_Article_DevelopingADeepNeuralNetworkMo.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format