Skin Lesion Segmentation With Improved Convolutional Neural Network

dc.contributor.author Öztürk, Şaban
dc.contributor.author Özkaya, Umut
dc.date.accessioned 2021-12-13T10:34:47Z
dc.date.available 2021-12-13T10:34:47Z
dc.date.issued 2020
dc.description.abstract Recently, the incidence of skin cancer has increased considerably and is seriously threatening human health. Automatic detection of this disease, where early detection is critical to human life, is quite challenging. Factors such as undesirable residues (hair, ruler markers), indistinct boundaries, variable contrast, shape differences, and color differences in the skin lesion images make automatic analysis quite difficult. To overcome these challenges, a highly effective segmentation method based on a fully convolutional network (FCN) is presented in this paper. The proposed improved FCN (iFCN) architecture is used for the segmentation of full-resolution skin lesion images without any pre- or post-processing. It is to support the residual structure of the FCN architecture with spatial information. This situation, which creates a more advanced residual system, enables more precise detection of details on the edges of the lesion, and an analysis independent of skin color can be performed. It offers two contributions: determining the center of the lesion and clarifying the edge details despite the undesirable effects. Two publicly available datasets, the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 Challenge and PH2 datasets, are used to evaluate the performance of the iFCN method. The mean Jaccard index is 78.34%, the mean Dice score is 88.64%, and the mean accuracy value is 95.30% for the proposed method for the ISBI 2017 test dataset. Furthermore, the mean Jaccard index is 87.1%, the mean Dice score is 93.02%, and the mean accuracy value is 96.92% for the proposed method for the PH2 test dataset. en_US
dc.identifier.doi 10.1007/s10278-020-00343-z
dc.identifier.issn 0897-1889
dc.identifier.issn 1618-727X
dc.identifier.scopus 2-s2.0-85085100289
dc.identifier.uri https://doi.org/10.1007/s10278-020-00343-z
dc.identifier.uri https://hdl.handle.net/20.500.13091/1169
dc.language.iso en en_US
dc.publisher SPRINGER en_US
dc.relation.ispartof JOURNAL OF DIGITAL IMAGING en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Skin Lesion Segmentation en_US
dc.subject Cnn en_US
dc.subject Fcn en_US
dc.subject Segmentation en_US
dc.subject Melanoma en_US
dc.subject Dermoscopy Images en_US
dc.subject Border Detection en_US
dc.title Skin Lesion Segmentation With Improved Convolutional Neural Network en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ozturk, Saban/0000-0003-2371-8173
gdc.author.scopusid 57191953654
gdc.author.scopusid 57191610477
gdc.author.wosid Ozturk, Saban/ABI-3936-2020
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 970 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 958 en_US
gdc.description.volume 33 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3021895818
gdc.identifier.pmid 32378058
gdc.identifier.wos WOS:000531507800002
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 67.0
gdc.oaire.influence 9.380789E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Image Processing, Computer-Assisted
gdc.oaire.keywords Humans
gdc.oaire.keywords Dermoscopy
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.keywords Skin Diseases
gdc.oaire.keywords Algorithms
gdc.oaire.popularity 9.376129E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 8.44937394
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 102
gdc.plumx.crossrefcites 42
gdc.plumx.mendeley 85
gdc.plumx.patentfamcites 1
gdc.plumx.pubmedcites 15
gdc.plumx.scopuscites 123
gdc.scopus.citedcount 120
gdc.virtual.author Özkaya, Umut
gdc.wos.citedcount 96
relation.isAuthorOfPublication 04ccc400-06d6-4438-9f17-97fdca915bf4
relation.isAuthorOfPublication.latestForDiscovery 04ccc400-06d6-4438-9f17-97fdca915bf4

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Öztürk-Özkaya2020_Article_SkinLesionSegmentationWithImpr.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format