Classification of Knee Osteoarthritis Severity by Transfer Learning From X-Ray Images

dc.contributor.author Solak, Fatma Zehra
dc.date.accessioned 2024-10-10T16:05:59Z
dc.date.available 2024-10-10T16:05:59Z
dc.date.issued 2024
dc.description.abstract Knee Osteoarthritis (KOA) is the most common type of arthritis and its severity is assessed with the Kellgren-Lawrence (KL) grading system based on evidence from both knee bones. Recent advancements point to an era where computer-assisted methods enhance KOA diagnostic efficiency. This study implemented binary and multiple classification processes based on X-ray images and deep learning algorithms for computer-aided KOA severity diagnosis. Pre-processing involved extracting the region of interest and contrast enhancement with CLAHE on the X-ray images from the included dataset. Using this dataset, 2, 3, 4, and 5 class classification processes were conducted with ResNet-50, Xception, VGG16, EfficientNetb0, and DenseNet201 transfer learning models. Each model was assessed with “rmsprop,” “sgdm,” and “adam” optimization algorithms. Study findings reveal that, the DenseNet201-rmsprop model achieved 87.7% accuracy, 87.2% F1-Score, and a 0.75 Cohen’s kappa value for 2-class classification. For 3-class classification, it achieved 85.6% accuracy, 82.4% F1-Score, and a 0.71 Cohen’s kappa value. For 4-class classification, the DenseNet201-rmsprop model provided 81.5% accuracy, 77.1% F1-Score, and a Cohen’s kappa value of 0.67. In the 5-class classification, the highest success was with the Xception-rmsprop model, with 67.8% accuracy, 68.8% F1-Score, and a 0.55 Cohen’s kappa value. The evaluation with varying class numbers and different transfer learning models highlights the proposed approach’s effectiveness. Results of the study underscore the study’s uniqueness and success in demonstrating how varying the number of classes, employing different transfer learning models and optimizers can provide clearer insights into KOA severity evaluation. en_US
dc.identifier.doi 10.7212/karaelmasfen.1480055
dc.identifier.issn 2146-4987
dc.identifier.uri https://doi.org/10.7212/karaelmasfen.1480055
dc.identifier.uri https://search.trdizin.gov.tr/tr/yayin/detay/1252265
dc.identifier.uri https://hdl.handle.net/20.500.13091/6405
dc.language.iso en en_US
dc.relation.ispartof Karaelmas Fen ve Mühendislik Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Classification of Knee Osteoarthritis Severity by Transfer Learning From X-Ray Images en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Solak, Fatma Zehra
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp Konya Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümü, Konya, Türkiye en_US
gdc.description.endpage 133 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 119 en_US
gdc.description.volume 14 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4400932179
gdc.identifier.trdizinid 1252265
gdc.index.type TR-Dizin
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.keywords Yazılım Mühendisliği (Diğer)
gdc.oaire.keywords Software Engineering (Other)
gdc.oaire.keywords Clahe;multiple classification;osteoarthritis;transfer learning;x-ray
gdc.oaire.keywords Clahe;çoklu sınıflandırma;osteoartrit;transfer öğrenme;x-ray
gdc.oaire.popularity 2.3737945E-9
gdc.openalex.collaboration National
gdc.openalex.fwci 0.73505193
gdc.openalex.normalizedpercentile 0.61
gdc.opencitations.count 0
gdc.virtual.author Solak, Fatma Zehra
relation.isAuthorOfPublication a143ef98-c9d0-4c3f-b785-24a88d05e33b
relation.isAuthorOfPublication.latestForDiscovery a143ef98-c9d0-4c3f-b785-24a88d05e33b

Files