Cosleepnet: Automated Sleep Staging Using a Hybrid Cnn-Lstm Network on Imbalanced Eeg-Eog Datasets

dc.contributor.author Efe, Enes
dc.contributor.author Özşen, Seral
dc.date.accessioned 2022-11-28T16:54:43Z
dc.date.available 2022-11-28T16:54:43Z
dc.date.issued 2023
dc.description.abstract Sleep relaxes and rests the body by slowing down the metabolism, making us physically stronger and fitter when we wake up. However, in a sleep disorder that may occur in humans, this process is reversed and various dis-orders occur in the body. Therefore, determining sleep stages is vital for diagnosing and treating such sleep disorders. However, manual scoring of sleep stages is tedious, time-consuming and requires considerable expertise. It also suffers from inter-observer variability. Deep learning techniques can automate this process, overcome these problems and produce more consistent results. This study proposes a new hybrid neural network architecture using focal loss and discrete cosine transform methods to solve the training data imbalance problem. The model was trained on four different databases using k-fold validation strategies (subject-wise), and the highest score was 87.11% accuracy, 81.81% Kappa score, and 79.83% MF1 when using two channels (EEG-EOG). The results of our approach are promising when compared to existing methods. en_US
dc.identifier.doi 10.1016/j.bspc.2022.104299
dc.identifier.issn 1746-8094
dc.identifier.issn 1746-8108
dc.identifier.scopus 2-s2.0-85140065545
dc.identifier.uri https://doi.org/10.1016/j.bspc.2022.104299
dc.identifier.uri https://doi.org/10.1016/j.bspc.2022.104299
dc.identifier.uri https://hdl.handle.net/20.500.13091/3160
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.ispartof Biomedical Signal Processing and Control en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Automatic sleep staging en_US
dc.subject Discrete cosine transform en_US
dc.subject CNN en_US
dc.subject LSTM en_US
dc.subject Focal loss en_US
dc.subject Neural-Network en_US
dc.subject Recognition en_US
dc.subject Signals en_US
dc.subject Transform en_US
dc.subject Model en_US
dc.title Cosleepnet: Automated Sleep Staging Using a Hybrid Cnn-Lstm Network on Imbalanced Eeg-Eog Datasets en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id efe, enes/0000-0002-6136-6140
gdc.author.institutional Özsen, Seral
gdc.author.scopusid 57360455800
gdc.author.scopusid 22986589400
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 104299
gdc.description.volume 80 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4306877181
gdc.identifier.wos WOS:000878776000005
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 51.0
gdc.oaire.influence 5.1877356E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.946569E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 8.02604565
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 29
gdc.plumx.crossrefcites 45
gdc.plumx.mendeley 33
gdc.plumx.scopuscites 53
gdc.scopus.citedcount 52
gdc.virtual.author Özşen, Seral
gdc.wos.citedcount 40
relation.isAuthorOfPublication 0a748abb-7416-473a-972c-70aa88a8d2a3
relation.isAuthorOfPublication.latestForDiscovery 0a748abb-7416-473a-972c-70aa88a8d2a3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1746809422007534-main.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format