Cosleepnet: Automated Sleep Staging Using a Hybrid Cnn-Lstm Network on Imbalanced Eeg-Eog Datasets
| dc.contributor.author | Efe, Enes | |
| dc.contributor.author | Özşen, Seral | |
| dc.date.accessioned | 2022-11-28T16:54:43Z | |
| dc.date.available | 2022-11-28T16:54:43Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | Sleep relaxes and rests the body by slowing down the metabolism, making us physically stronger and fitter when we wake up. However, in a sleep disorder that may occur in humans, this process is reversed and various dis-orders occur in the body. Therefore, determining sleep stages is vital for diagnosing and treating such sleep disorders. However, manual scoring of sleep stages is tedious, time-consuming and requires considerable expertise. It also suffers from inter-observer variability. Deep learning techniques can automate this process, overcome these problems and produce more consistent results. This study proposes a new hybrid neural network architecture using focal loss and discrete cosine transform methods to solve the training data imbalance problem. The model was trained on four different databases using k-fold validation strategies (subject-wise), and the highest score was 87.11% accuracy, 81.81% Kappa score, and 79.83% MF1 when using two channels (EEG-EOG). The results of our approach are promising when compared to existing methods. | en_US |
| dc.identifier.doi | 10.1016/j.bspc.2022.104299 | |
| dc.identifier.issn | 1746-8094 | |
| dc.identifier.issn | 1746-8108 | |
| dc.identifier.scopus | 2-s2.0-85140065545 | |
| dc.identifier.uri | https://doi.org/10.1016/j.bspc.2022.104299 | |
| dc.identifier.uri | https://doi.org/10.1016/j.bspc.2022.104299 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/3160 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Sci Ltd | en_US |
| dc.relation.ispartof | Biomedical Signal Processing and Control | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Automatic sleep staging | en_US |
| dc.subject | Discrete cosine transform | en_US |
| dc.subject | CNN | en_US |
| dc.subject | LSTM | en_US |
| dc.subject | Focal loss | en_US |
| dc.subject | Neural-Network | en_US |
| dc.subject | Recognition | en_US |
| dc.subject | Signals | en_US |
| dc.subject | Transform | en_US |
| dc.subject | Model | en_US |
| dc.title | Cosleepnet: Automated Sleep Staging Using a Hybrid Cnn-Lstm Network on Imbalanced Eeg-Eog Datasets | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | efe, enes/0000-0002-6136-6140 | |
| gdc.author.institutional | Özsen, Seral | |
| gdc.author.scopusid | 57360455800 | |
| gdc.author.scopusid | 22986589400 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C3 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 104299 | |
| gdc.description.volume | 80 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4306877181 | |
| gdc.identifier.wos | WOS:000878776000005 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 51.0 | |
| gdc.oaire.influence | 5.1877356E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 3.946569E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0302 clinical medicine | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 8.02604565 | |
| gdc.openalex.normalizedpercentile | 0.98 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 29 | |
| gdc.plumx.crossrefcites | 45 | |
| gdc.plumx.mendeley | 33 | |
| gdc.plumx.scopuscites | 53 | |
| gdc.scopus.citedcount | 52 | |
| gdc.virtual.author | Özşen, Seral | |
| gdc.wos.citedcount | 40 | |
| relation.isAuthorOfPublication | 0a748abb-7416-473a-972c-70aa88a8d2a3 | |
| relation.isAuthorOfPublication.latestForDiscovery | 0a748abb-7416-473a-972c-70aa88a8d2a3 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 1-s2.0-S1746809422007534-main.pdf
- Size:
- 1.05 MB
- Format:
- Adobe Portable Document Format
