Binary Artificial Algae Algorithm for Feature Selection

dc.contributor.author Türkoğlu, Bahaeddin
dc.contributor.author Uymaz, Sait Ali
dc.contributor.author Kaya, Ersin
dc.date.accessioned 2022-05-23T20:22:40Z
dc.date.available 2022-05-23T20:22:40Z
dc.date.issued 2022
dc.description.abstract In this study, binary versions of the Artificial Algae Algorithm (AAA) are presented and employed to determine the ideal attribute subset for classification processes. AAA is a recently proposed algorithm inspired by microalgae's living behavior, which has not been consistently implemented to determine ideal attribute subset (feature selection) processes yet. AAA can effectively look into the feature space for ideal attributes combination minimizing a designed objective function. The proposed binary versions of AAA are employed to determine the ideal attribute combination that maximizes classification success while minimizing the count of attributes. The original AAA is utilized in these versions while its continuous spaces are restricted in a threshold using an appropriate threshold function after flattening them. In order to demonstrate the performance of the presented binary artificial algae algorithm model, an experimental study was conducted with the latest seven highperformance optimization algorithms. Several evaluation metrics are used to accurately evaluate and analyze the performance of these algorithms over twenty-five datasets with different difficulty levels from the UCI Machine Learning Repository. The experimental results and statistical tests verify the performance of the presented algorithms in increasing the classification accuracy compared to other state-of-the-art binary algorithms, which confirms the capability of the AAA algorithm in exploring the attribute space and deciding the most valuable features for classification problems. (C) 2022 Elsevier B.V. All rights reserved. en_US
dc.identifier.doi 10.1016/j.asoc.2022.108630
dc.identifier.issn 1568-4946
dc.identifier.issn 1872-9681
dc.identifier.scopus 2-s2.0-85125840947
dc.identifier.uri https://doi.org/10.1016/j.asoc.2022.108630
dc.identifier.uri https://hdl.handle.net/20.500.13091/2405
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Applied Soft Computing en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Feature selection en_US
dc.subject Artificial Algae Algorithm en_US
dc.subject Metaheuristics en_US
dc.subject Binary optimization en_US
dc.subject Fly Optimization Algorithm en_US
dc.subject Classifiers en_US
dc.subject Network en_US
dc.title Binary Artificial Algae Algorithm for Feature Selection en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 108630
gdc.description.volume 120 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4213428708
gdc.identifier.wos WOS:000791589300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 48.0
gdc.oaire.influence 4.062177E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.8723577E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 9.78994101
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 38
gdc.plumx.crossrefcites 47
gdc.plumx.mendeley 30
gdc.plumx.scopuscites 48
gdc.scopus.citedcount 47
gdc.virtual.author Kaya, Ersin
gdc.virtual.author Uymaz, Sait Ali
gdc.wos.citedcount 44
relation.isAuthorOfPublication 6b459b99-eed9-45fb-b42f-50fbb4ee7090
relation.isAuthorOfPublication 83ffad2c-51a1-41f6-8ede-6d95ca8e9ac0
relation.isAuthorOfPublication.latestForDiscovery 6b459b99-eed9-45fb-b42f-50fbb4ee7090

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1568494622001211-main.pdf
Size:
2.33 MB
Format:
Adobe Portable Document Format