Binary Artificial Algae Algorithm for Feature Selection
No Thumbnail Available
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In this study, binary versions of the Artificial Algae Algorithm (AAA) are presented and employed to determine the ideal attribute subset for classification processes. AAA is a recently proposed algorithm inspired by microalgae's living behavior, which has not been consistently implemented to determine ideal attribute subset (feature selection) processes yet. AAA can effectively look into the feature space for ideal attributes combination minimizing a designed objective function. The proposed binary versions of AAA are employed to determine the ideal attribute combination that maximizes classification success while minimizing the count of attributes. The original AAA is utilized in these versions while its continuous spaces are restricted in a threshold using an appropriate threshold function after flattening them. In order to demonstrate the performance of the presented binary artificial algae algorithm model, an experimental study was conducted with the latest seven highperformance optimization algorithms. Several evaluation metrics are used to accurately evaluate and analyze the performance of these algorithms over twenty-five datasets with different difficulty levels from the UCI Machine Learning Repository. The experimental results and statistical tests verify the performance of the presented algorithms in increasing the classification accuracy compared to other state-of-the-art binary algorithms, which confirms the capability of the AAA algorithm in exploring the attribute space and deciding the most valuable features for classification problems. (C) 2022 Elsevier B.V. All rights reserved.
Description
Keywords
Feature selection, Artificial Algae Algorithm, Metaheuristics, Binary optimization, Fly Optimization Algorithm, Classifiers, Network
Turkish CoHE Thesis Center URL
Fields of Science
0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Citation
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
38
Source
Applied Soft Computing
Volume
120
Issue
Start Page
108630
End Page
PlumX Metrics
Citations
CrossRef : 47
Scopus : 48
Captures
Mendeley Readers : 30
SCOPUS™ Citations
47
checked on Feb 03, 2026
Web of Science™ Citations
44
checked on Feb 03, 2026
Google Scholar™


