Analysis of Depression, Anxiety, Stress Scale (dass-42) With Methods of Data Mining

dc.contributor.author Sulak, Süleyman Alpaslan
dc.contributor.author Köklu, Nigmet
dc.date.accessioned 2024-10-10T16:05:55Z
dc.date.available 2024-10-10T16:05:55Z
dc.date.issued 2024
dc.description.abstract This study employs advanced data mining techniques to investigate the DASS-42 questionnaire, a widely used psychological assessment tool. Administered to 680 students at Necmettin Erbakan University's Ahmet Kelesoglu Faculty of Education, the DASS-42 comprises three distinct subscales-depression, anxiety and stress-each consisting of 14 items. Departing from traditional statistical methodologies, the study harnesses the power of the WEKA data mining program to analyse the dataset. Employing Naive Bayes (NB), Artificial Neural Network (ANN), Logistic Regression (LR), Support Vector Machine (SVM) and Random Forest (RF) algorithms, the research unveils novel insights. The ANN method emerges as a standout performer, achieving remarkable distinctiveness scores for all subscales: depression (99.26%), anxiety (98.67%) and stress (97.35%). The study highlights the potential of data mining in enhancing psychological assessment and showcases the ANN's prowess in capturing intricate patterns within complex psychological dimensions. By charting a course beyond conventional statistical methods, this research pioneers a new frontier for employing data mining within the realm of social sciences. As a result of the study, it is recommended that teacher candidates in the teacher education process should have knowledge about depression, anxiety and stress, and relevant courses on these topics should be added to the curriculum of teacher education programs. en_US
dc.identifier.doi 10.1111/ejed.12778
dc.identifier.issn 0141-8211
dc.identifier.issn 1465-3435
dc.identifier.scopus 2-s2.0-85204283987
dc.identifier.uri https://doi.org/10.1111/ejed.12778
dc.identifier.uri https://hdl.handle.net/20.500.13091/6374
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof European Journal of Education en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject artificial neural network en_US
dc.subject DASS-42 en_US
dc.subject data mining en_US
dc.subject naive bayes en_US
dc.subject random forest en_US
dc.subject Classification en_US
dc.title Analysis of Depression, Anxiety, Stress Scale (dass-42) With Methods of Data Mining en_US
dc.type Article en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id SULAK, Suleyman Alpaslan/0000-0001-9716-9336
gdc.author.institutional
gdc.author.scopusid 59193058000
gdc.author.scopusid 57221725261
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Sulak, Suleyman Alpaslan] Necmettin Erbakan Univ, Ahmet Kelesoglu Educ Fac, Konya, Turkiye; [Koklu, Nigmet] Konya Tech Univ, Tech Sci Vocat High Sch, Konya, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 59
gdc.description.wosquality Q1
gdc.identifier.openalex W4402693421
gdc.identifier.wos WOS:001315678100001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 7.0
gdc.oaire.influence 2.8846139E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 7.794193E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 7.67506309
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 73
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.wos.citedcount 3

Files