Analysis of Depression, Anxiety, Stress Scale (dass-42) With Methods of Data Mining

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Open Access Color

HYBRID

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

This study employs advanced data mining techniques to investigate the DASS-42 questionnaire, a widely used psychological assessment tool. Administered to 680 students at Necmettin Erbakan University's Ahmet Kelesoglu Faculty of Education, the DASS-42 comprises three distinct subscales-depression, anxiety and stress-each consisting of 14 items. Departing from traditional statistical methodologies, the study harnesses the power of the WEKA data mining program to analyse the dataset. Employing Naive Bayes (NB), Artificial Neural Network (ANN), Logistic Regression (LR), Support Vector Machine (SVM) and Random Forest (RF) algorithms, the research unveils novel insights. The ANN method emerges as a standout performer, achieving remarkable distinctiveness scores for all subscales: depression (99.26%), anxiety (98.67%) and stress (97.35%). The study highlights the potential of data mining in enhancing psychological assessment and showcases the ANN's prowess in capturing intricate patterns within complex psychological dimensions. By charting a course beyond conventional statistical methods, this research pioneers a new frontier for employing data mining within the realm of social sciences. As a result of the study, it is recommended that teacher candidates in the teacher education process should have knowledge about depression, anxiety and stress, and relevant courses on these topics should be added to the curriculum of teacher education programs.

Description

Keywords

artificial neural network, DASS-42, data mining, naive bayes, random forest, Classification

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

European Journal of Education

Volume

59

Issue

Start Page

End Page

PlumX Metrics
Citations

Scopus : 7

Captures

Mendeley Readers : 73

SCOPUS™ Citations

7

checked on Feb 03, 2026

Web of Science™ Citations

3

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
7.67506309

Sustainable Development Goals

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo