A Fast Numerical Method for Fractional Partial Integro-Differential Equations With Spatial-Time Delays

dc.contributor.author Aslan, Ersin
dc.contributor.author Kürkçü, Ömür Kıvanç
dc.contributor.author Sezer, Mehmet
dc.date.accessioned 2021-12-13T10:19:51Z
dc.date.available 2021-12-13T10:19:51Z
dc.date.issued 2021
dc.description.abstract This study aims to efficiently solve the space-time fractional partial integro-differential equations with spatial-time delays, employing a fast numerical methodology dependent upon the matching polynomial of complete graph and matrix-collocation procedure. This methodology provides a sustainable approach for each computation limit since it arises from the durable graph structure of complete graph and fractional matrix relations. The convergence analysis is established using the residual function of mean value theorem for double integrals. An error estimation is also implemented. All computations are performed with the aid of a unique computer program, which returns the desired results in seconds. Some specific numerical problems are tested to discuss the applicability of the method in tables and figures. It is stated that the method stands for fast, simple and highly accurate computation. (c) 2020 IMACS. Published by Elsevier B.V. All rights reserved. en_US
dc.identifier.doi 10.1016/j.apnum.2020.12.007
dc.identifier.issn 0168-9274
dc.identifier.issn 1873-5460
dc.identifier.scopus 2-s2.0-85097733203
dc.identifier.uri https://doi.org/10.1016/j.apnum.2020.12.007
dc.identifier.uri https://hdl.handle.net/20.500.13091/150
dc.language.iso en en_US
dc.publisher ELSEVIER en_US
dc.relation.ispartof APPLIED NUMERICAL MATHEMATICS en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fractional partial derivative en_US
dc.subject Matrix-collocation method en_US
dc.subject Error analysis en_US
dc.subject Residual function en_US
dc.subject Mean value theorem en_US
dc.title A Fast Numerical Method for Fractional Partial Integro-Differential Equations With Spatial-Time Delays en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kurkcu, Omur Kivanc/0000-0002-3987-7171
gdc.author.scopusid 55869112400
gdc.author.scopusid 57038964500
gdc.author.scopusid 8674094900
gdc.author.wosid Kurkcu, Omur Kivanc/AAQ-4682-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Mühendislik Temel Bilimleri Bölümü en_US
gdc.description.endpage 539 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 525 en_US
gdc.description.volume 161 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3111148976
gdc.identifier.wos WOS:000613718300033
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 11.0
gdc.oaire.influence 2.9645015E-9
gdc.oaire.isgreen false
gdc.oaire.keywords residual function
gdc.oaire.keywords Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
gdc.oaire.keywords matrix-collocation method
gdc.oaire.keywords fractional partial derivative
gdc.oaire.keywords Integro-differential operators
gdc.oaire.keywords mean value theorem
gdc.oaire.keywords error analysis
gdc.oaire.keywords Error bounds for numerical methods for ordinary differential equations
gdc.oaire.popularity 1.0064707E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.32037866
gdc.openalex.normalizedpercentile 0.67
gdc.opencitations.count 11
gdc.plumx.crossrefcites 12
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.virtual.author Kürkçü, Ömür Kıvanç
gdc.wos.citedcount 10
relation.isAuthorOfPublication 496ebac1-5a78-4ae4-8148-e9bc97c6af22
relation.isAuthorOfPublication.latestForDiscovery 496ebac1-5a78-4ae4-8148-e9bc97c6af22

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0168927420303809-main.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format