Determining the Most Powerful Features in the Design of an Automatic Sleep Staging System

dc.contributor.author Özşen, Seral
dc.contributor.author Koca, Yasin
dc.contributor.author Tezel, Gülay
dc.contributor.author Çeper, Sena
dc.contributor.author Küççüktürk, Serkan
dc.contributor.author Vatansev, Hülya
dc.date.accessioned 2023-10-02T11:17:37Z
dc.date.available 2023-10-02T11:17:37Z
dc.date.issued 2023
dc.description.abstract Spending too much time on manual sleep staging is tiring and challenging for sleep specialists. In addition, experience in sleep staging also creates different decisions for sleep experts. The search for finding an effective automatic sleep staging system has been accelerated in the last few years. There are many studies dealing with this problem but very few of them were conducted with real sleep data. Studies have been carried out on mostly processed and cleaned-ready data sets. In addition, there are few studies in which the data distribution in sleep stages is balanced (equal numbers of epochs from each stage are used), and it is seen that the performance of these studies is quite low compared to other studies. When the literature studies are examined, there is a wide range of studies in which many features are extracted, many feature selection methods are used, many classifiers are applied and various combinations of these are available. For this reason, to determine the best-performing features and the most powerful features, 168 features were extracted from the real EEG, EOG, and EMG signals of 124 patients. These features were selected with 7 different feature selection methods, and classification was carried out with 4 classifiers. In general, the ReliefF feature selection method has performed best, and the Bagged Tree classifier has reached the highest classification accuracy of 67.92% with the use of nonlinear features. en_US
dc.identifier.doi 10.36306/konjes.1073932
dc.identifier.issn 2667-8055
dc.identifier.issn 2147-9364
dc.identifier.uri https://doi.org/10.36306/konjes.1073932
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/1195900
dc.identifier.uri https://hdl.handle.net/20.500.13091/4648
dc.language.iso en en_US
dc.relation.ispartof Konya mühendislik bilimleri dergisi (Online) en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Determining the Most Powerful Features in the Design of an Automatic Sleep Staging System en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp Konya Teknik Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü, Konya, Türkiye -- Konya Teknik Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü, Konya, Türkiye -- Konya Teknik Üniversitesi, Bilgisayar Mühendisliği Bölümü, Konya, Türkiye -- Konya Teknik Üniversitesi, Bilgisayar Mühendisliği Bölümü, Konya, Türkiye -- Necmettin Erbakan Üniversitesi, Tıp Fakültesi, Uyku Laboratuvarı, Konya, Türkiye -- Necmettin Erbakan Üniversitesi, Tıp Fakültesi, Uyku Laboratuvarı, Konya, Türkiye en_US
gdc.description.endpage 800 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 783 en_US
gdc.description.volume 11 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W4386280477
gdc.identifier.trdizinid 1195900
gdc.identifier.wos WOS:001312960100015
gdc.index.type WoS
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Engineering
gdc.oaire.keywords Mühendislik
gdc.oaire.keywords Automatic Sleep Staging;Frequency Analysis of EEG Signals;Sleep Signal Detection
gdc.oaire.keywords Automatic sleep staging;frequency analysis of EEG signals;sleep signal detection
gdc.oaire.popularity 2.0536601E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.15
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.virtual.author Özşen, Seral
gdc.virtual.author Çeper, Sena
gdc.virtual.author Tezel, Gülay
gdc.wos.citedcount 0
relation.isAuthorOfPublication 0a748abb-7416-473a-972c-70aa88a8d2a3
relation.isAuthorOfPublication ab01cb80-8e6f-42cd-95c0-27977a4e3ac8
relation.isAuthorOfPublication fd306700-db85-40d5-be06-7e211c7c657f
relation.isAuthorOfPublication.latestForDiscovery 0a748abb-7416-473a-972c-70aa88a8d2a3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.36306-konjes.1073932-2254972.pdf
Size:
992.89 KB
Format:
Adobe Portable Document Format