Short-Term Prediction of Pm2.5 Pollution With Deep Learning Methods

dc.contributor.author Ayturan, Y.A.
dc.contributor.author Ayturan, Zeynep Cansu
dc.contributor.author Altun, H.O.
dc.contributor.author Kongoli, C.
dc.contributor.author Tuncez, F.D.
dc.contributor.author Dursun, Şükrü
dc.contributor.author Öztürk. Ali
dc.coverage.doi https://doi.org/10.30955/gnj.003208
dc.date.accessioned 2021-12-13T10:19:58Z
dc.date.available 2021-12-13T10:19:58Z
dc.date.issued 2020
dc.description.abstract Particulate matter (PM), classified according to aerodynamic diameter, is one of the harmful pollutants causing health damaging effects. It is considered as cancerogenic by the World Health Organization (WHO) because of the substances found in the chemical composition of PM. In this study, short-term prediction of PM2.5 pollution at 1, 2 and 3 hours was modelled using deep learning methods. Three deep learning algorithms and the combination thereof were evaluated: Long-short term memory units (LSTM), recurrent neural networks (RNN) and gated recurrent unit (GRU). Air Quality Monitoring Stations of the Ministry of Environment and Urbanization of Turkey were utilized to obtain the data. Specifically, meteorological and air pollution data were obtained from a monitoring station located in Kecioren District of Ankara. Several trials were conducted using different combinations of RNN, GRU and LSTM models. Pollutant concentrations and meteorological factors were integrated into the model as input parameters to predict PM2.5 concentration for 1, 2 and 3 hours. Best results with R-2 of 0.83, 0.7 and 0.63 for 1, 2-, and 3-hour predictions, respectively, were obtained by using a combination of GRU and RNN models. The results of this study are promising for explaining the effect of different deep learning models on prediction performance. en_US
dc.identifier.doi 10.30955/gnj.003208
dc.identifier.issn 1790-7632 en_US
dc.identifier.issn 2241-777X
dc.identifier.scopus 2-s2.0-85085090892
dc.identifier.uri https://doi.org/10.30955/gnj.003208
dc.identifier.uri https://hdl.handle.net/20.500.13091/200
dc.language.iso en en_US
dc.publisher GLOBAL NETWORK ENVIRONMENTAL SCIENCE & TECHNOLOGY en_US
dc.relation.ispartof GLOBAL NEST JOURNAL en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Air pollution en_US
dc.subject particulate matter en_US
dc.subject deep learning en_US
dc.subject prediction en_US
dc.subject GRU en_US
dc.subject RNN en_US
dc.title Short-Term Prediction of Pm2.5 Pollution With Deep Learning Methods en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0001-9502-1178
gdc.author.id 0000-0001-9513-4949
gdc.author.institutional Dursun, Şükrü
gdc.author.institutional Ayturan, Zeynep Cansu
gdc.author.scopusid 57216886929
gdc.author.scopusid 57204971317
gdc.author.scopusid 57212227954
gdc.author.scopusid 6602760623
gdc.author.scopusid 57196260173
gdc.author.scopusid 7005761090
gdc.author.scopusid 57197223283
gdc.author.wosid Tuncez, Fatma Didem/ABI-7129-2020
gdc.author.wosid DURSUN, SUKRU/A-8432-2019
gdc.author.wosid Ozturk, Ali/AAG-3039-2021
gdc.author.wosid DURSUN, SUKRU/A-5579-2018
gdc.author.wosid Ayturan, Zeynep Cansu/A-1288-2019
gdc.author.wosid Ayturan, Yasin Akin/R-6620-2018
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.contributor.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE# en_US
gdc.contributor.affiliation Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Çevre Mühendisliği Bölümü en_US
gdc.contributor.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE# en_US
gdc.contributor.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE# en_US
gdc.contributor.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE# en_US
gdc.contributor.affiliation Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Çevre Mühendisliği Bölümü en_US
gdc.contributor.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE# en_US
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 131 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 126 en_US
gdc.description.volume 22 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W4247210168
gdc.identifier.wos WOS:000523568400016
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.9686642E-9
gdc.oaire.isgreen false
gdc.oaire.keywords GRU
gdc.oaire.keywords Gru
gdc.oaire.keywords RNN
gdc.oaire.keywords Rnn
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Air Pollution
gdc.oaire.keywords Particulate Matter
gdc.oaire.keywords Prediction
gdc.oaire.popularity 9.1395025E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 0.96724828
gdc.openalex.normalizedpercentile 0.73
gdc.opencitations.count 7
gdc.plumx.mendeley 52
gdc.plumx.scopuscites 26
gdc.scopus.citedcount 26
gdc.virtual.author Dursun, Şükrü
gdc.virtual.author Ayturan, Zeynep Cansu
gdc.wos.citedcount 19
relation.isAuthorOfPublication 31116e0d-0d6c-4f48-85e0-5e7491489431
relation.isAuthorOfPublication c0bd4be8-a5e4-4fc8-b73a-877555219e8c
relation.isAuthorOfPublication.latestForDiscovery 31116e0d-0d6c-4f48-85e0-5e7491489431

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
gnest_03208_published.pdf
Size:
619.84 KB
Format:
Adobe Portable Document Format