Derin Öğrenme Tabanlı Yüz Algılama Sistemiyle Temassız Ateş Ölçümü

dc.contributor.advisor Akdemir, Bayram
dc.contributor.author Tuna, Kubilay
dc.date.accessioned 2023-04-13T04:57:51Z
dc.date.available 2023-04-13T04:57:51Z
dc.date.issued 2022
dc.description.abstract Pandemik hastalıkların hemen hemen hepsinin ortak semptomu yüksek ateştir. Böylece en basit şekilde, anormal vücut sıcaklığı olarak nitelendirilen 38 °C ve üstünde ateşe sahip kişilerin tespiti, bulaş riskini ortadan kaldırarak salgının kontrol altına alınmasını sağlayacaktır. Fakat yüzlerce kişinin giriş çıkış yaptığı kalabalık insan topluluğunun olduğu ortamlarda bu kişilerin kontrolünü sağlamak güçtür. Bu durum iş gücü, maliyet gerektirerek zaman kaybına neden olmaktadır. Haliyle içinde bulunduğumuz gelişmiş teknoloji dünyasında, bu süreci insan etkisini ortadan kaldırarak otomatikleştirmek gerekliliktir. Bu tezde, Covid-19 nedeniyle enfekte olmuş kişilerin yüzlerini tespit etmek için özel Single Shot Detection (SSD) modeli kullanılmıştır. Tespit edilen bu yüzler üzerinde Ensemble of Regresyon Trees (ERT) modeliyle yüz işaret noktaları belirlenerek kişinin vücut sıcaklığının en doğru olduğu göz çevresinin tespit edilmesi önerilmiştir. Son olarak, termal değer, sensör füzyonu kullanılarak temassız bir şekilde göz çevresinden ölçülmüştür. Yapılan analizler sonucunda önerilen sistemin farklı ölçüm yöntemlerine yakın sonuçlar verdiği gözlemlenmiştir (Tuna ve Akdemir, 2022). en_US
dc.description.abstract The common symptom of almost all pandemic diseases is high fever. Thus, in the simplest way, the detection of people with a fever of 38 °C and above, which is described as abnormal body temperature, will eliminate the risk of transmission, and ensure that the epidemic is brought under control. However, it is difficult to control these people in environments where hundreds of people enter and exit. This situation causes loss of time by requiring labor and cost. Therefore, in the advanced technology world we live in, it is necessary to automate this process by eliminating human influence. In this thesis, custom Single Shot Detection (SSD) was used to detect infected people faces because of Covid-19. It has been suggested to determine around the eyes area where the body temperature of the person most accurate by determining the facial landmarks with Ensemble of Regression Trees (ERT) model on these detected faces. Finally, the thermal value was measured from around the eyes area in a non-contact way using sensor fusion. As a result of the analyzes made, it was observed that the proposed system gave results close to the different measurement methods (Tuna & Akdemir, 2022). en_US]
dc.identifier.uri https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=kIrIdtdJ31bRgjb6fHvMUWOmuUyqUbUpUR8yoH5W7TQlLOfNN8_3fwFa4X2QUZw9
dc.identifier.uri https://hdl.handle.net/20.500.13091/3842
dc.language.iso tr en_US
dc.publisher Konya Teknik Üniversitesi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol en_US]
dc.subject Computer Engineering and Computer Science and Control en_US]
dc.subject Elektrik ve Elektronik Mühendisliği en_US]
dc.subject Electrical and Electronics Engineering en_US]
dc.title Derin Öğrenme Tabanlı Yüz Algılama Sistemiyle Temassız Ateş Ölçümü en_US
dc.title.alternative Non-Contact Fever Measurement With Deep Learning Based Face Detection System en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Tuna, Kubilay
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Enstitüler, Lisansüstü Eğitim Enstitüsü, Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı en_US
gdc.description.endpage 69 en_US
gdc.description.publicationcategory Tez en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1 en_US
gdc.description.wosquality N/A
gdc.identifier.yoktezid 779674 en_US
gdc.virtual.author Akdemir, Bayram
relation.isAuthorOfPublication b71ff576-49be-43e7-bc5e-69428299f3fa
relation.isAuthorOfPublication.latestForDiscovery b71ff576-49be-43e7-bc5e-69428299f3fa
relation.isOrgUnitOfPublication e7436ffa-3f5f-43e9-9bc4-93f3d2989efb
relation.isOrgUnitOfPublication 734472cd-522b-46a9-b0bd-f92197eb0894
relation.isOrgUnitOfPublication 38239134-2638-4e9e-8ec2-877d1e166988
relation.isOrgUnitOfPublication.latestForDiscovery e7436ffa-3f5f-43e9-9bc4-93f3d2989efb

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
779674.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format

Collections