A Novel Deep Learning Model for Pancreas Segmentation: Pascal U-Net

dc.contributor.author Kurnaz, Ender
dc.contributor.author Ceylan, Rahime
dc.contributor.author Bozkurt, Mustafa Alper
dc.contributor.author Cebeci, Hakan
dc.contributor.author Koplay, Mustafa
dc.date.accessioned 2024-06-19T14:41:54Z
dc.date.available 2024-06-19T14:41:54Z
dc.date.issued 2024
dc.description.abstract A robust and reliable automated organ segmentation from abdomen images is a crucial problem in both quantitative imaging analysis and computer-aided diagnosis. In particular, automatic pancreas segmentation from abdomen CT images is the most challenging task based on two main aspects (1) high variability in anatomy (like as shape, size, etc.) and location across different patients and (2) low contrast with neighbouring tissues. Due to these reasons, the achievement of high accuracies in pancreas segmentation is a hard image segmentation problem. In this paper, we propose a novel deep learning model which is a convolutional neural network-based model called Pascal U-Net for pancreas segmentation. The performance of the proposed model is evaluated on The Cancer Imaging Archive (TCIA) Pancreas CT database and abdomen CT dataset which is taken from Selcuk University Medicine Faculty Radiology Department. During the experimental studies, the k-fold cross-validation method is used. Furthermore, the results of the proposed model are compared with the results of traditional U-Net. If results obtained by Pascal U-Net and traditional U-Net for different batch sizes and fold number is compared, it can be seen that experiments on both datasets validate the effectiveness of the Pascal U-Net model for pancreas segmentation. en_US
dc.identifier.doi 10.4114/intartif.vol27iss74pp22-36
dc.identifier.issn 1137-3601
dc.identifier.issn 1988-3064
dc.identifier.scopus 2-s2.0-85194579202
dc.identifier.uri https://doi.org/10.4114/intartif.vol27iss74pp22-36
dc.identifier.uri https://hdl.handle.net/20.500.13091/5719
dc.language.iso en en_US
dc.publisher Asoc Espanola Inteligencia Artificial en_US
dc.relation.ispartof Inteligencia artificial-iberoamerican journal of artificial intelligence en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Pancreas Segmentation en_US
dc.subject Deep Learning en_US
dc.subject Pascal U -Net en_US
dc.subject U -Net. en_US
dc.title A Novel Deep Learning Model for Pancreas Segmentation: Pascal U-Net en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Kurnaz, Ender
gdc.author.institutional Ceylan, Rahime
gdc.author.scopusid 57205200677
gdc.author.scopusid 12244684600
gdc.author.scopusid 57407810400
gdc.author.scopusid 56033553000
gdc.author.scopusid 55920818900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Kurnaz, Ender; Ceylan, Rahime] Konya Tech Univ, Fac Engn & Nat Sci, Dept Elect & Elect Engn, Konya, Turkiye; [Bozkurt, Mustafa Alper; Cebeci, Hakan; Koplay, Mustafa] Selcuk Univ, Fac Med, Dept Radiol, Konya, Turkiye en_US
gdc.description.endpage 36 en_US
gdc.description.issue 74 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 22 en_US
gdc.description.volume 27 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4397016044
gdc.identifier.wos WOS:001228365200002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.6724847E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.6528688E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 2.45722145
gdc.openalex.normalizedpercentile 0.83
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 1
gdc.virtual.author Kurnaz, Ender
gdc.virtual.author Ceylan, Rahime
gdc.wos.citedcount 1
relation.isAuthorOfPublication a30b5e40-cd9e-4916-b806-af4b6f587f04
relation.isAuthorOfPublication db1f6849-0679-4c3f-8bb5-fcfb40beb531
relation.isAuthorOfPublication.latestForDiscovery a30b5e40-cd9e-4916-b806-af4b6f587f04

Files