A Novel Deep Learning Model for Pancreas Segmentation: Pascal U-Net

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Asoc Espanola Inteligencia Artificial

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

A robust and reliable automated organ segmentation from abdomen images is a crucial problem in both quantitative imaging analysis and computer-aided diagnosis. In particular, automatic pancreas segmentation from abdomen CT images is the most challenging task based on two main aspects (1) high variability in anatomy (like as shape, size, etc.) and location across different patients and (2) low contrast with neighbouring tissues. Due to these reasons, the achievement of high accuracies in pancreas segmentation is a hard image segmentation problem. In this paper, we propose a novel deep learning model which is a convolutional neural network-based model called Pascal U-Net for pancreas segmentation. The performance of the proposed model is evaluated on The Cancer Imaging Archive (TCIA) Pancreas CT database and abdomen CT dataset which is taken from Selcuk University Medicine Faculty Radiology Department. During the experimental studies, the k-fold cross-validation method is used. Furthermore, the results of the proposed model are compared with the results of traditional U-Net. If results obtained by Pascal U-Net and traditional U-Net for different batch sizes and fold number is compared, it can be seen that experiments on both datasets validate the effectiveness of the Pascal U-Net model for pancreas segmentation.

Description

Keywords

Pancreas Segmentation, Deep Learning, Pascal U -Net, U -Net.

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q2

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Inteligencia artificial-iberoamerican journal of artificial intelligence

Volume

27

Issue

74

Start Page

22

End Page

36
PlumX Metrics
Citations

Scopus : 2

Captures

Mendeley Readers : 5

SCOPUS™ Citations

1

checked on Feb 03, 2026

Web of Science™ Citations

1

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.45722145

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo